Normalized defining polynomial
\( x^{16} - 5 x^{15} + 36 x^{14} - 195 x^{13} + 1105 x^{12} - 5065 x^{11} + 27324 x^{10} - 149175 x^{9} + 771979 x^{8} - 3163050 x^{7} + 10091364 x^{6} - 24600040 x^{5} + 46030480 x^{4} - 64197120 x^{3} + 65519616 x^{2} - 44564480 x + 16777216 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(648034417553121620683837890625=5^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{8} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{6} - \frac{1}{4} a^{5} + \frac{1}{4} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{8} a^{11} - \frac{1}{8} a^{10} - \frac{3}{8} a^{8} - \frac{3}{8} a^{7} + \frac{3}{8} a^{6} + \frac{1}{8} a^{4} - \frac{1}{8} a^{3} + \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{16} a^{12} - \frac{1}{16} a^{11} - \frac{3}{16} a^{9} + \frac{5}{16} a^{8} - \frac{5}{16} a^{7} - \frac{1}{2} a^{6} - \frac{7}{16} a^{5} - \frac{1}{16} a^{4} + \frac{1}{8} a^{3} - \frac{1}{4} a^{2} - \frac{1}{2} a$, $\frac{1}{512} a^{13} - \frac{5}{512} a^{12} - \frac{7}{128} a^{11} - \frac{3}{512} a^{10} - \frac{47}{512} a^{9} + \frac{247}{512} a^{8} - \frac{1}{128} a^{7} - \frac{247}{512} a^{6} - \frac{245}{512} a^{5} + \frac{11}{256} a^{4} + \frac{9}{128} a^{3} - \frac{29}{64} a^{2} + \frac{9}{32} a$, $\frac{1}{26008575584026624} a^{14} - \frac{21322013041253}{26008575584026624} a^{13} + \frac{99749918616833}{6502143896006656} a^{12} - \frac{225319573323331}{26008575584026624} a^{11} + \frac{768709465723761}{26008575584026624} a^{10} - \frac{117808409977427}{1368872399159296} a^{9} + \frac{2185663802151943}{6502143896006656} a^{8} - \frac{7255097603247415}{26008575584026624} a^{7} - \frac{3310236731049429}{26008575584026624} a^{6} - \frac{458085208359653}{13004287792013312} a^{5} - \frac{3230170000784951}{6502143896006656} a^{4} + \frac{1070442588317843}{3251071948003328} a^{3} + \frac{710406344888409}{1625535974001664} a^{2} + \frac{281413249217}{668394726152} a + \frac{86439925466}{1587437474611}$, $\frac{1}{57904044518461362368412338618368} a^{15} - \frac{607775075731109}{57904044518461362368412338618368} a^{14} - \frac{3351985268076771113664436143}{14476011129615340592103084654592} a^{13} + \frac{1697215244675046268565902266557}{57904044518461362368412338618368} a^{12} + \frac{2962165388987533674693564731441}{57904044518461362368412338618368} a^{11} - \frac{4337006400331998157529440595049}{57904044518461362368412338618368} a^{10} - \frac{322008910487854531287612874857}{14476011129615340592103084654592} a^{9} + \frac{21611798067035106407616611130313}{57904044518461362368412338618368} a^{8} - \frac{8679738645740480014867921124373}{57904044518461362368412338618368} a^{7} - \frac{12760560847859463611427902971461}{28952022259230681184206169309184} a^{6} - \frac{1551583277204313184947126300567}{14476011129615340592103084654592} a^{5} + \frac{2875985121850729314135922636147}{7238005564807670296051542327296} a^{4} + \frac{699177159561725971785596147705}{3619002782403835148025771163648} a^{3} - \frac{5484208847663798990837812227}{56546918475059924187902674432} a^{2} + \frac{435020174335743795415132183}{883545601172811315435979288} a - \frac{48392705403046624027484128}{110443200146601414429497411}$
Class group and class number
$C_{12}\times C_{12}$, which has order $144$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{15290731575489343349732979}{57904044518461362368412338618368} a^{15} - \frac{87153799645506472310168415}{57904044518461362368412338618368} a^{14} + \frac{142965293464809670101649395}{14476011129615340592103084654592} a^{13} - \frac{3198219463801529326182992409}{57904044518461362368412338618368} a^{12} + \frac{17978476061899386378137976771}{57904044518461362368412338618368} a^{11} - \frac{83187231147717388124996013675}{57904044518461362368412338618368} a^{10} + \frac{109963981239187596649466953125}{14476011129615340592103084654592} a^{9} - \frac{2424941846160671863200332761525}{57904044518461362368412338618368} a^{8} + \frac{12615259497529541800350206486865}{57904044518461362368412338618368} a^{7} - \frac{26074591441495183078010976990687}{28952022259230681184206169309184} a^{6} + \frac{41376604132656663609605780083275}{14476011129615340592103084654592} a^{5} - \frac{49272660077372967171441167211255}{7238005564807670296051542327296} a^{4} + \frac{44145742562434671376996703389947}{3619002782403835148025771163648} a^{3} - \frac{444048731104135470659561143635}{28273459237529962093951337216} a^{2} + \frac{24663752231540120075785824423}{1767091202345622630871958576} a - \frac{746700516269377327873238646}{110443200146601414429497411} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 4866018.67571 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $61$ | 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |