Normalized defining polynomial
\( x^{16} + 26 x^{14} - 10 x^{13} + 332 x^{12} - 215 x^{11} + 2623 x^{10} - 1875 x^{9} + 13365 x^{8} - 8500 x^{7} + 43177 x^{6} - 20250 x^{5} + 85157 x^{4} - 26025 x^{3} + 98444 x^{2} - 22120 x + 52081 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6479004825445556640625=5^{14}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{155381049276737669238438328300381} a^{15} + \frac{33634143029712074690174680522163}{155381049276737669238438328300381} a^{14} + \frac{44360985441114959941306387334454}{155381049276737669238438328300381} a^{13} + \frac{29806659855362248204835678530282}{155381049276737669238438328300381} a^{12} - \frac{53659155497077818752470404192591}{155381049276737669238438328300381} a^{11} + \frac{38368584523298600728205760656952}{155381049276737669238438328300381} a^{10} + \frac{66203388255976604748455826314479}{155381049276737669238438328300381} a^{9} + \frac{74504192217998418569924418556997}{155381049276737669238438328300381} a^{8} + \frac{49635370696143061844234627794603}{155381049276737669238438328300381} a^{7} + \frac{1036616606722803598610423347945}{14125549934248879021676211663671} a^{6} - \frac{61400185004637217098277035301874}{155381049276737669238438328300381} a^{5} - \frac{24225862171514828862439109519067}{155381049276737669238438328300381} a^{4} + \frac{30839303957604108144288695224817}{155381049276737669238438328300381} a^{3} + \frac{29786541349128758064039766781777}{155381049276737669238438328300381} a^{2} + \frac{71226678088368695525156411717540}{155381049276737669238438328300381} a - \frac{7573944287642495751299324161656}{155381049276737669238438328300381}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1446013908848045961903316}{58612240391074186811934488231} a^{15} + \frac{13498173462376888609878132}{58612240391074186811934488231} a^{14} + \frac{44231237891704419064065838}{58612240391074186811934488231} a^{13} + \frac{294939422384315265717958700}{58612240391074186811934488231} a^{12} + \frac{468323813340483497914084337}{58612240391074186811934488231} a^{11} + \frac{3144981044637501827099392161}{58612240391074186811934488231} a^{10} + \frac{2454277546888867290765619263}{58612240391074186811934488231} a^{9} + \frac{20761657525587706782258253659}{58612240391074186811934488231} a^{8} + \frac{7891502494976662346951145495}{58612240391074186811934488231} a^{7} + \frac{87279958555630573384754367649}{58612240391074186811934488231} a^{6} + \frac{20090746692531297995625315629}{58612240391074186811934488231} a^{5} + \frac{219757093384197499808099105655}{58612240391074186811934488231} a^{4} + \frac{54238516158720357475288052520}{58612240391074186811934488231} a^{3} + \frac{294203616202598122223943062424}{58612240391074186811934488231} a^{2} + \frac{60288205278177067391681977966}{58612240391074186811934488231} a + \frac{170268070813244555363248933253}{58612240391074186811934488231} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 36899.0417494 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.1578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| $101$ | $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| $\Q_{101}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 101.2.1.2 | $x^{2} + 202$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 101.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 101.4.3.3 | $x^{4} + 202$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 101.4.2.2 | $x^{4} - 101 x^{2} + 30603$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |