Normalized defining polynomial
\( x^{16} - 24 x^{14} - 15 x^{13} + 287 x^{12} + 245 x^{11} - 2007 x^{10} - 2005 x^{9} + 9205 x^{8} + 9110 x^{7} - 27618 x^{6} - 25420 x^{5} + 54852 x^{4} + 39985 x^{3} - 66171 x^{2} - 30745 x + 42191 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6479004825445556640625=5^{14}\cdot 101^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.08$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 101$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{416751220567408238071109} a^{15} - \frac{205478217432315962266746}{416751220567408238071109} a^{14} + \frac{56644581687900825860738}{416751220567408238071109} a^{13} + \frac{14735008176046016078229}{37886474597037112551919} a^{12} - \frac{167000657153497387023880}{416751220567408238071109} a^{11} + \frac{2564869419192946371076}{6831987222416528492969} a^{10} - \frac{104241804438155061089990}{416751220567408238071109} a^{9} + \frac{66153673186923983702466}{416751220567408238071109} a^{8} + \frac{95273632929939617597665}{416751220567408238071109} a^{7} + \frac{85727914986199221348276}{416751220567408238071109} a^{6} + \frac{12129410031429527168445}{37886474597037112551919} a^{5} - \frac{84712507911467657317678}{416751220567408238071109} a^{4} - \frac{60242874249444551880405}{416751220567408238071109} a^{3} + \frac{159600432838357324990907}{416751220567408238071109} a^{2} - \frac{146637691005483133050327}{416751220567408238071109} a - \frac{122566454086514778234073}{416751220567408238071109}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{3546458718014944010}{621089747492411681179} a^{15} + \frac{6197735654208938219}{621089747492411681179} a^{14} - \frac{73884842028892247429}{621089747492411681179} a^{13} - \frac{182243603418927529390}{621089747492411681179} a^{12} + \frac{690954663607195458781}{621089747492411681179} a^{11} + \frac{2068426820712271373897}{621089747492411681179} a^{10} - \frac{3416883271460387091142}{621089747492411681179} a^{9} - \frac{12984837128357094314255}{621089747492411681179} a^{8} + \frac{9481283310754014421582}{621089747492411681179} a^{7} + \frac{48272688983554597410670}{621089747492411681179} a^{6} - \frac{11965254469651807723557}{621089747492411681179} a^{5} - \frac{109306297812525473562816}{621089747492411681179} a^{4} + \frac{481151771037143599716}{621089747492411681179} a^{3} + \frac{139758518630872281196709}{621089747492411681179} a^{2} + \frac{13190062489434964648271}{621089747492411681179} a - \frac{84695610317805165624596}{621089747492411681179} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22011.2476493 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1263 |
| Character table for t16n1263 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.0.1578125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{10}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }{,}\,{\href{/LocalNumberField/59.4.0.1}{4} }{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 5 | Data not computed | ||||||
| 101 | Data not computed | ||||||