Normalized defining polynomial
\( x^{16} - x^{15} + x^{14} + x^{13} + 3 x^{12} + 4 x^{11} + 4 x^{10} + 8 x^{9} + 8 x^{8} + 9 x^{7} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(6472705322265625\)
\(\medspace = 5^{12}\cdot 19^{2}\cdot 271^{2}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.73\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $5^{3/4}19^{1/2}271^{1/2}\approx 239.93242815578742$ | ||
Ramified primes: |
\(5\), \(19\), \(271\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $2$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5}a^{8}+\frac{2}{5}a^{7}+\frac{1}{5}a^{6}+\frac{1}{5}a^{5}-\frac{1}{5}a^{4}-\frac{2}{5}a^{3}-\frac{1}{5}a^{2}-\frac{1}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{9}+\frac{2}{5}a^{7}-\frac{1}{5}a^{6}+\frac{2}{5}a^{5}-\frac{2}{5}a^{3}+\frac{1}{5}a^{2}-\frac{2}{5}a-\frac{2}{5}$, $\frac{1}{5}a^{10}-\frac{2}{5}a^{5}-\frac{2}{5}$, $\frac{1}{5}a^{11}-\frac{2}{5}a^{6}-\frac{2}{5}a$, $\frac{1}{5}a^{12}-\frac{2}{5}a^{7}-\frac{2}{5}a^{2}$, $\frac{1}{5}a^{13}-\frac{1}{5}a^{7}+\frac{2}{5}a^{6}+\frac{2}{5}a^{5}-\frac{2}{5}a^{4}-\frac{1}{5}a^{3}-\frac{2}{5}a^{2}-\frac{2}{5}a+\frac{2}{5}$, $\frac{1}{5}a^{14}-\frac{1}{5}a^{7}-\frac{2}{5}a^{6}-\frac{1}{5}a^{5}-\frac{2}{5}a^{4}+\frac{1}{5}a^{3}+\frac{2}{5}a^{2}+\frac{1}{5}a+\frac{1}{5}$, $\frac{1}{5}a^{15}-\frac{1}{5}a^{5}+\frac{1}{5}$
Monogenic: | Not computed | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -\frac{3}{5} a^{15} + a^{14} - a^{13} - \frac{2}{5} a^{12} - \frac{7}{5} a^{11} - \frac{6}{5} a^{10} - a^{9} - 4 a^{8} - \frac{16}{5} a^{7} - \frac{16}{5} a^{6} - 2 a^{5} - 4 a^{4} - 4 a^{3} - \frac{1}{5} a^{2} - \frac{11}{5} a - \frac{6}{5} \)
(order $10$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$\frac{1}{5}a^{15}-\frac{2}{5}a^{14}+\frac{3}{5}a^{13}-\frac{2}{5}a^{12}+a^{11}-\frac{1}{5}a^{10}+\frac{4}{5}a^{9}+\frac{4}{5}a^{8}+\frac{4}{5}a^{7}+a^{6}-\frac{4}{5}a^{5}+\frac{4}{5}a^{4}-\frac{1}{5}a^{3}-\frac{1}{5}a^{2}-\frac{2}{5}$, $\frac{1}{5}a^{14}-\frac{2}{5}a^{13}+\frac{1}{5}a^{12}+\frac{4}{5}a^{10}-\frac{3}{5}a^{9}-\frac{1}{5}a^{8}-\frac{4}{5}a^{7}+\frac{1}{5}a^{6}-a^{5}-\frac{7}{5}a^{4}-\frac{4}{5}a^{3}-\frac{3}{5}a^{2}-\frac{3}{5}a-\frac{6}{5}$, $\frac{1}{5}a^{15}-\frac{3}{5}a^{14}+\frac{3}{5}a^{13}-a^{9}+a^{8}-a^{7}+\frac{2}{5}a^{6}-\frac{7}{5}a^{5}+a^{4}+\frac{4}{5}a^{3}-\frac{7}{5}a^{2}+\frac{6}{5}a-\frac{1}{5}$, $\frac{2}{5}a^{14}-\frac{4}{5}a^{13}+\frac{4}{5}a^{12}+\frac{4}{5}a^{10}+\frac{2}{5}a^{9}+\frac{8}{5}a^{7}+\frac{1}{5}a^{6}+\frac{1}{5}a^{5}-\frac{6}{5}a^{4}+\frac{7}{5}a^{3}+\frac{1}{5}a^{2}-\frac{4}{5}a+\frac{2}{5}$, $\frac{2}{5}a^{15}-\frac{3}{5}a^{14}+\frac{3}{5}a^{13}+\frac{1}{5}a^{12}+a^{11}+a^{10}+a^{9}+\frac{11}{5}a^{8}+2a^{7}+\frac{8}{5}a^{6}+\frac{8}{5}a^{5}+\frac{14}{5}a^{4}+\frac{12}{5}a^{3}+a^{2}+a+\frac{6}{5}$, $\frac{4}{5}a^{15}-a^{14}+\frac{3}{5}a^{13}+\frac{4}{5}a^{12}+2a^{11}+\frac{11}{5}a^{10}+a^{9}+\frac{17}{5}a^{8}+\frac{13}{5}a^{7}+\frac{13}{5}a^{6}-\frac{3}{5}a^{5}+\frac{7}{5}a^{4}+\frac{13}{5}a^{3}-\frac{6}{5}a^{2}+\frac{2}{5}a$, $\frac{1}{5}a^{15}+\frac{1}{5}a^{14}-\frac{4}{5}a^{13}+a^{12}+\frac{3}{5}a^{11}+\frac{8}{5}a^{10}+\frac{1}{5}a^{9}+\frac{2}{5}a^{8}+\frac{9}{5}a^{7}+a^{6}+\frac{3}{5}a^{5}-\frac{6}{5}a^{4}+\frac{9}{5}a^{3}+\frac{4}{5}a^{2}-\frac{6}{5}a+\frac{3}{5}$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 56.3298547938 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 56.3298547938 \cdot 1}{10\cdot\sqrt{6472705322265625}}\cr\approx \mathstrut & 0.170072721267 \end{aligned}\]
Galois group
$S_4^2:C_4$ (as 16T1497):
A solvable group of order 2304 |
The 40 conjugacy class representatives for $S_4^2:C_4$ |
Character table for $S_4^2:C_4$ |
Intermediate fields
\(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.4.80453125.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 12 siblings: | data not computed |
Degree 16 siblings: | data not computed |
Degree 24 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Degree 36 siblings: | data not computed |
Minimal sibling: | 12.0.2071265703125.1 |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | ${\href{/padicField/3.12.0.1}{12} }{,}\,{\href{/padicField/3.4.0.1}{4} }$ | R | ${\href{/padicField/7.12.0.1}{12} }{,}\,{\href{/padicField/7.4.0.1}{4} }$ | ${\href{/padicField/11.4.0.1}{4} }^{4}$ | ${\href{/padicField/13.12.0.1}{12} }{,}\,{\href{/padicField/13.4.0.1}{4} }$ | ${\href{/padicField/17.12.0.1}{12} }{,}\,{\href{/padicField/17.4.0.1}{4} }$ | R | ${\href{/padicField/23.4.0.1}{4} }^{4}$ | ${\href{/padicField/29.6.0.1}{6} }{,}\,{\href{/padicField/29.2.0.1}{2} }^{5}$ | ${\href{/padicField/31.3.0.1}{3} }^{2}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}{,}\,{\href{/padicField/31.1.0.1}{1} }^{6}$ | ${\href{/padicField/37.8.0.1}{8} }^{2}$ | ${\href{/padicField/41.4.0.1}{4} }^{2}{,}\,{\href{/padicField/41.3.0.1}{3} }^{2}{,}\,{\href{/padicField/41.1.0.1}{1} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{4}$ | ${\href{/padicField/53.8.0.1}{8} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(5\)
| 5.16.12.1 | $x^{16} + 16 x^{14} + 16 x^{13} + 124 x^{12} + 192 x^{11} + 368 x^{10} - 16 x^{9} + 1462 x^{8} + 2688 x^{7} + 2544 x^{6} + 5232 x^{5} + 14108 x^{4} + 4800 x^{3} + 8592 x^{2} - 6512 x + 13041$ | $4$ | $4$ | $12$ | $C_4^2$ | $[\ ]_{4}^{4}$ |
\(19\)
| 19.2.0.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
19.2.0.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
19.2.0.1 | $x^{2} + 18 x + 2$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
19.6.0.1 | $x^{6} + 17 x^{3} + 17 x^{2} + 6 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(271\)
| $\Q_{271}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
$\Q_{271}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{271}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{271}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{271}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
$\Q_{271}$ | $x$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $2$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | ||
Deg $3$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |