Normalized defining polynomial
\( x^{16} - 4 x^{15} + 9 x^{14} - 14 x^{13} + 16 x^{12} - 9 x^{11} - 8 x^{10} + 27 x^{9} - 35 x^{8} + \cdots + 1 \)
Invariants
Degree: | $16$ | sage: K.degree()
gp: poldegree(K.pol)
magma: Degree(K);
oscar: degree(K)
| |
Signature: | $[0, 8]$ | sage: K.signature()
gp: K.sign
magma: Signature(K);
oscar: signature(K)
| |
Discriminant: |
\(6468474822995241\)
\(\medspace = 3^{2}\cdot 7^{2}\cdot 19^{4}\cdot 103^{4}\)
| sage: K.disc()
gp: K.disc
magma: OK := Integers(K); Discriminant(OK);
oscar: OK = ring_of_integers(K); discriminant(OK)
| |
Root discriminant: | \(9.73\) | sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
magma: Abs(Discriminant(OK))^(1/Degree(K));
oscar: (1.0 * dK)^(1/degree(K))
| |
Galois root discriminant: | $3^{1/2}7^{1/2}19^{1/2}103^{1/2}\approx 202.7239502377556$ | ||
Ramified primes: |
\(3\), \(7\), \(19\), \(103\)
| sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
magma: PrimeDivisors(Discriminant(OK));
oscar: prime_divisors(discriminant((OK)))
| |
Discriminant root field: | \(\Q\) | ||
$\card{ \Aut(K/\Q) }$: | $4$ | sage: K.automorphisms()
magma: Automorphisms(K);
oscar: automorphisms(K)
| |
This field is not Galois over $\Q$. | |||
This is not a CM field. |
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $a^{15}$
Monogenic: | Yes | |
Index: | $1$ | |
Inessential primes: | None |
Class group and class number
Trivial group, which has order $1$
Unit group
Rank: | $7$ | sage: UK.rank()
gp: K.fu
magma: UnitRank(K);
oscar: rank(UK)
| |
Torsion generator: |
\( -1 \)
(order $2$)
| sage: UK.torsion_generator()
gp: K.tu[2]
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
oscar: torsion_units_generator(OK)
| |
Fundamental units: |
$a^{15}-2a^{13}+6a^{12}-9a^{11}+13a^{10}-3a^{9}-11a^{8}+24a^{7}-22a^{6}+12a^{5}+5a^{4}-10a^{3}+11a^{2}-7a+4$, $6a^{15}-20a^{14}+39a^{13}-53a^{12}+52a^{11}-9a^{10}-62a^{9}+116a^{8}-112a^{7}+59a^{6}+12a^{5}-51a^{4}+51a^{3}-35a^{2}+19a-5$, $a^{15}-2a^{13}+7a^{12}-11a^{11}+16a^{10}-7a^{9}-8a^{8}+25a^{7}-26a^{6}+16a^{5}+2a^{4}-10a^{3}+11a^{2}-7a+4$, $7a^{15}-20a^{14}+37a^{13}-47a^{12}+42a^{11}+6a^{10}-69a^{9}+110a^{8}-94a^{7}+39a^{6}+25a^{5}-50a^{4}+45a^{3}-29a^{2}+15a-3$, $2a^{15}-8a^{14}+17a^{13}-25a^{12}+27a^{11}-12a^{10}-21a^{9}+52a^{8}-59a^{7}+40a^{6}-6a^{5}-21a^{4}+27a^{3}-21a^{2}+13a-5$, $4a^{15}-15a^{14}+30a^{13}-42a^{12}+42a^{11}-11a^{10}-48a^{9}+95a^{8}-97a^{7}+55a^{6}+4a^{5}-43a^{4}+46a^{3}-34a^{2}+19a-6$, $8a^{15}-26a^{14}+51a^{13}-70a^{12}+69a^{11}-13a^{10}-79a^{9}+152a^{8}-151a^{7}+83a^{6}+11a^{5}-66a^{4}+71a^{3}-50a^{2}+28a-8$
| sage: UK.fundamental_units()
gp: K.fu
magma: [K|fUK(g): g in Generators(UK)];
oscar: [K(fUK(a)) for a in gens(UK)]
| |
Regulator: | \( 11.6239832087 \) | sage: K.regulator()
gp: K.reg
magma: Regulator(K);
oscar: regulator(K)
|
Class number formula
\[ \begin{aligned}\lim_{s\to 1} (s-1)\zeta_K(s) =\mathstrut & \frac{2^{r_1}\cdot (2\pi)^{r_2}\cdot R\cdot h}{w\cdot\sqrt{|D|}}\cr \approx\mathstrut &\frac{2^{0}\cdot(2\pi)^{8}\cdot 11.6239832087 \cdot 1}{2\cdot\sqrt{6468474822995241}}\cr\approx \mathstrut & 0.175534699079 \end{aligned}\]
Galois group
$C_2^8.S_4$ (as 16T1664):
A solvable group of order 6144 |
The 105 conjugacy class representatives for $C_2^8.S_4$ |
Character table for $C_2^8.S_4$ |
Intermediate fields
4.4.1957.1, 8.4.80426829.1, 8.2.11489547.1, 8.2.26808943.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Degree 16 siblings: | data not computed |
Degree 32 siblings: | data not computed |
Minimal sibling: | This field is its own minimal sibling |
Frobenius cycle types
$p$ | $2$ | $3$ | $5$ | $7$ | $11$ | $13$ | $17$ | $19$ | $23$ | $29$ | $31$ | $37$ | $41$ | $43$ | $47$ | $53$ | $59$ |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cycle type | ${\href{/padicField/2.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/5.8.0.1}{8} }^{2}$ | R | ${\href{/padicField/11.8.0.1}{8} }^{2}$ | ${\href{/padicField/13.8.0.1}{8} }^{2}$ | ${\href{/padicField/17.4.0.1}{4} }^{4}$ | R | ${\href{/padicField/23.6.0.1}{6} }^{2}{,}\,{\href{/padicField/23.2.0.1}{2} }^{2}$ | ${\href{/padicField/29.8.0.1}{8} }^{2}$ | ${\href{/padicField/31.3.0.1}{3} }^{4}{,}\,{\href{/padicField/31.2.0.1}{2} }^{2}$ | ${\href{/padicField/37.6.0.1}{6} }^{2}{,}\,{\href{/padicField/37.2.0.1}{2} }^{2}$ | ${\href{/padicField/41.8.0.1}{8} }^{2}$ | ${\href{/padicField/43.4.0.1}{4} }^{2}{,}\,{\href{/padicField/43.2.0.1}{2} }^{4}$ | ${\href{/padicField/47.4.0.1}{4} }^{2}{,}\,{\href{/padicField/47.2.0.1}{2} }^{2}{,}\,{\href{/padicField/47.1.0.1}{1} }^{4}$ | ${\href{/padicField/53.6.0.1}{6} }^{2}{,}\,{\href{/padicField/53.2.0.1}{2} }^{2}$ | ${\href{/padicField/59.4.0.1}{4} }^{2}{,}\,{\href{/padicField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
$p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
---|---|---|---|---|---|---|---|
\(3\)
| 3.4.2.1 | $x^{4} + 4 x^{3} + 14 x^{2} + 20 x + 13$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
3.6.0.1 | $x^{6} + 2 x^{4} + x^{2} + 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
3.6.0.1 | $x^{6} + 2 x^{4} + x^{2} + 2 x + 2$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(7\)
| 7.4.2.1 | $x^{4} + 12 x^{3} + 56 x^{2} + 120 x + 268$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
7.6.0.1 | $x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
7.6.0.1 | $x^{6} + x^{4} + 5 x^{3} + 4 x^{2} + 6 x + 3$ | $1$ | $6$ | $0$ | $C_6$ | $[\ ]^{6}$ | |
\(19\)
| 19.4.0.1 | $x^{4} + 2 x^{2} + 11 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
19.4.0.1 | $x^{4} + 2 x^{2} + 11 x + 2$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
19.4.2.1 | $x^{4} + 36 x^{3} + 366 x^{2} + 756 x + 6445$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
\(103\)
| 103.4.2.1 | $x^{4} + 204 x^{3} + 10620 x^{2} + 22032 x + 1081216$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
103.4.0.1 | $x^{4} + 2 x^{2} + 88 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
103.4.0.1 | $x^{4} + 2 x^{2} + 88 x + 5$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
103.4.2.1 | $x^{4} + 204 x^{3} + 10620 x^{2} + 22032 x + 1081216$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |