Normalized defining polynomial
\( x^{16} - 8 x^{15} + 64 x^{14} - 308 x^{13} + 1682 x^{12} - 6452 x^{11} + 29822 x^{10} - 96354 x^{9} + 415396 x^{8} - 1143564 x^{7} + 3114838 x^{6} - 5687148 x^{5} + 10843313 x^{4} - 13379230 x^{3} - 8650820 x^{2} + 14558768 x + 23119168 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6447013204011288145829796273674513=17^{15}\cdot 83^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $129.74$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 83$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{4} a^{8} - \frac{1}{4} a^{2}$, $\frac{1}{4} a^{9} - \frac{1}{4} a^{3}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{4}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{5}$, $\frac{1}{16} a^{12} - \frac{1}{8} a^{11} - \frac{1}{16} a^{9} - \frac{1}{8} a^{8} - \frac{1}{4} a^{7} + \frac{3}{16} a^{6} + \frac{1}{8} a^{5} - \frac{3}{16} a^{3} + \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{16} a^{13} - \frac{1}{16} a^{10} + \frac{3}{16} a^{7} - \frac{3}{16} a^{4}$, $\frac{1}{126761616008275186842592} a^{14} - \frac{7}{126761616008275186842592} a^{13} + \frac{56155084026674137679}{7922601000517199177662} a^{12} - \frac{5390888066560717217093}{126761616008275186842592} a^{11} - \frac{1091819416724663267545}{9750893539098091295584} a^{10} - \frac{199277499303088540489}{3961300500258599588831} a^{9} + \frac{14633985113857772293195}{126761616008275186842592} a^{8} - \frac{16193621317268385365333}{126761616008275186842592} a^{7} + \frac{389639527012571857553}{15845202001034398355324} a^{6} + \frac{151109104230135238507}{1891964418033958012576} a^{5} - \frac{27177085343359867203}{9750893539098091295584} a^{4} + \frac{2748543454652923276257}{15845202001034398355324} a^{3} - \frac{6946368896913928457899}{15845202001034398355324} a^{2} + \frac{5914631846087010468311}{15845202001034398355324} a + \frac{1788118137051144712753}{3961300500258599588831}$, $\frac{1}{40975565613058945871681021408} a^{15} + \frac{161617}{40975565613058945871681021408} a^{14} - \frac{295857201222141814098485149}{20487782806529472935840510704} a^{13} + \frac{149900937715874514447649947}{40975565613058945871681021408} a^{12} + \frac{1233914141739205454167140171}{40975565613058945871681021408} a^{11} - \frac{559690486324742407878446967}{20487782806529472935840510704} a^{10} + \frac{3663213663639939518790820011}{40975565613058945871681021408} a^{9} - \frac{599672110800719093128111589}{40975565613058945871681021408} a^{8} - \frac{601929474185349765409643291}{20487782806529472935840510704} a^{7} - \frac{4255770861449689847670074575}{40975565613058945871681021408} a^{6} + \frac{1586482117962758630922386713}{40975565613058945871681021408} a^{5} - \frac{373803046198199438519130969}{20487782806529472935840510704} a^{4} + \frac{2323314068849596975830354291}{5121945701632368233960127676} a^{3} + \frac{398478593551968387539161333}{1280486425408092058490031919} a^{2} - \frac{17523703157907095002481167}{48320242468229888999623846} a - \frac{579258805666927196423520694}{1280486425408092058490031919}$
Class group and class number
$C_{16}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13918762278.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $D_{16}$ |
| Character table for $D_{16}$ |
Intermediate fields
| \(\Q(\sqrt{-1411}) \), 4.0.33845657.1, 8.0.19473984461948033.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | $16$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| $83$ | 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 83.4.2.1 | $x^{4} + 249 x^{2} + 27556$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |