Normalized defining polynomial
\( x^{16} - 8 x^{15} + 292 x^{14} - 1904 x^{13} + 37210 x^{12} - 198872 x^{11} + 2716496 x^{10} - 11803912 x^{9} + 124608155 x^{8} - 429720664 x^{7} + 3683233888 x^{6} - 9593148040 x^{5} + 68561518138 x^{4} - 121613242624 x^{3} + 734957493100 x^{2} - 675681491256 x + 3472637458463 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(642655358696704749650787270733594624=2^{62}\cdot 139^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $172.98$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 139$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(4448=2^{5}\cdot 139\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{4448}(1,·)$, $\chi_{4448}(1669,·)$, $\chi_{4448}(833,·)$, $\chi_{4448}(3337,·)$, $\chi_{4448}(1389,·)$, $\chi_{4448}(277,·)$, $\chi_{4448}(1113,·)$, $\chi_{4448}(1945,·)$, $\chi_{4448}(2781,·)$, $\chi_{4448}(2501,·)$, $\chi_{4448}(2225,·)$, $\chi_{4448}(557,·)$, $\chi_{4448}(3613,·)$, $\chi_{4448}(3057,·)$, $\chi_{4448}(3893,·)$, $\chi_{4448}(4169,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{72782914696103338467646481} a^{14} - \frac{7}{72782914696103338467646481} a^{13} - \frac{34753946407992268639502751}{72782914696103338467646481} a^{12} - \frac{9825065640356403565922846}{72782914696103338467646481} a^{11} - \frac{20206292814429350565287193}{72782914696103338467646481} a^{10} + \frac{9137279035155439344945684}{72782914696103338467646481} a^{9} - \frac{17123913659407484939500822}{72782914696103338467646481} a^{8} - \frac{21620826921119797069175355}{72782914696103338467646481} a^{7} - \frac{34395415893690319991010957}{72782914696103338467646481} a^{6} + \frac{34179777112150180318483568}{72782914696103338467646481} a^{5} + \frac{8248733667694938125848675}{72782914696103338467646481} a^{4} + \frac{35217778616408420659323616}{72782914696103338467646481} a^{3} + \frac{12883485691380644851820262}{72782914696103338467646481} a^{2} - \frac{2030853381288078646921668}{4281347923300196380449793} a - \frac{6519619308310361992513499}{72782914696103338467646481}$, $\frac{1}{33885280813881475152120442581828577} a^{15} + \frac{232783201}{33885280813881475152120442581828577} a^{14} - \frac{12668705379051349147571995315668175}{33885280813881475152120442581828577} a^{13} + \frac{6485888183181328817879693574193527}{33885280813881475152120442581828577} a^{12} + \frac{7158778480212120627885598877317957}{33885280813881475152120442581828577} a^{11} - \frac{5209325593588802659304668415693014}{33885280813881475152120442581828577} a^{10} - \frac{16827516165051999386087278193466532}{33885280813881475152120442581828577} a^{9} - \frac{4775617220055191354452397994880195}{33885280813881475152120442581828577} a^{8} + \frac{10368024233253554421424187286158080}{33885280813881475152120442581828577} a^{7} - \frac{9699907353494592142792610022557271}{33885280813881475152120442581828577} a^{6} + \frac{15292912710852832595329563077400555}{33885280813881475152120442581828577} a^{5} + \frac{277031865671852254820258557925824}{33885280813881475152120442581828577} a^{4} - \frac{7803002243541358431522174205088989}{33885280813881475152120442581828577} a^{3} + \frac{13984212504225126546628600118963806}{33885280813881475152120442581828577} a^{2} - \frac{4027859556950520954461246742783139}{33885280813881475152120442581828577} a - \frac{14737755540559274948361731984998648}{33885280813881475152120442581828577}$
Class group and class number
$C_{3}\times C_{3}\times C_{1378461}$, which has order $12406149$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15753.94986242651 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 139 | Data not computed | ||||||