Normalized defining polynomial
\( x^{16} - 6 x^{15} + 1873 x^{14} - 31410 x^{13} + 1465823 x^{12} - 13245362 x^{11} + 373695495 x^{10} - 4141244433 x^{9} + 110959531595 x^{8} - 1370337802129 x^{7} + 11615377868028 x^{6} - 130418478207074 x^{5} + 2753263432891772 x^{4} - 16318805569604653 x^{3} - 8951931674854952 x^{2} - 1427922201066519125 x + 11763847569050485421 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6400551765976000463282291896137640731464336249990929=29^{14}\cdot 173^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $1729.37$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $29, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{26} a^{12} - \frac{1}{26} a^{11} - \frac{5}{13} a^{10} - \frac{1}{2} a^{9} - \frac{6}{13} a^{8} - \frac{5}{26} a^{7} + \frac{1}{26} a^{6} - \frac{11}{26} a^{5} + \frac{3}{26} a^{4} - \frac{6}{13} a^{3} - \frac{4}{13} a^{2} + \frac{3}{13} a - \frac{9}{26}$, $\frac{1}{1794} a^{13} + \frac{3}{598} a^{12} - \frac{205}{897} a^{11} + \frac{823}{1794} a^{10} - \frac{188}{897} a^{9} + \frac{785}{1794} a^{8} - \frac{179}{1794} a^{7} + \frac{623}{1794} a^{6} + \frac{283}{1794} a^{5} + \frac{107}{299} a^{4} + \frac{40}{897} a^{3} + \frac{340}{897} a^{2} - \frac{157}{1794} a - \frac{11}{39}$, $\frac{1}{995680764} a^{14} + \frac{135139}{497840382} a^{13} - \frac{2443513}{497840382} a^{12} + \frac{5300575}{55315598} a^{11} - \frac{188259887}{995680764} a^{10} + \frac{21957955}{55315598} a^{9} + \frac{4077085}{38295414} a^{8} - \frac{449739005}{995680764} a^{7} + \frac{2004779}{76590828} a^{6} - \frac{97259195}{497840382} a^{5} - \frac{318332401}{995680764} a^{4} + \frac{7389677}{82973397} a^{3} - \frac{73118741}{331893588} a^{2} + \frac{425294663}{995680764} a + \frac{1572235}{43290468}$, $\frac{1}{270598162188150492893014391368155847117059098501476966109473581851452129298518564365288511001089423338607072567360751784} a^{15} + \frac{80266617657987581867166223878280050411859164268281700915597744189539076121583840691992246610386163767172919449}{270598162188150492893014391368155847117059098501476966109473581851452129298518564365288511001089423338607072567360751784} a^{14} + \frac{15071163950403216490231861779600525028821092697030660332834180759022652787462711648231981973690028801761411823731587}{67649540547037623223253597842038961779264774625369241527368395462863032324629641091322127750272355834651768141840187946} a^{13} + \frac{811025389395554497526717034949151290358139290047639785392045551737356600102550433464964947941630958488465739275034067}{135299081094075246446507195684077923558529549250738483054736790925726064649259282182644255500544711669303536283680375892} a^{12} + \frac{57510656654719545616394192831294925737042608530748903890078306947729531736052127656569262129778043932314059378321965701}{270598162188150492893014391368155847117059098501476966109473581851452129298518564365288511001089423338607072567360751784} a^{11} - \frac{49427810123594976004568718888627013488497810678743248063612957410564804103906377927740606977607315784536580786724896239}{270598162188150492893014391368155847117059098501476966109473581851452129298518564365288511001089423338607072567360751784} a^{10} + \frac{37513457123360603271594357941752655846813041486027181580588131809886322325366029182135909790070997555111790744373168891}{135299081094075246446507195684077923558529549250738483054736790925726064649259282182644255500544711669303536283680375892} a^{9} + \frac{35378474329776581207486805912412518451025489030078192917493987060792890258663559203282469718335327681950388395052332265}{270598162188150492893014391368155847117059098501476966109473581851452129298518564365288511001089423338607072567360751784} a^{8} + \frac{36605050806870078067219952796394219785977390646765098427887814228144855014237917413992557207344353507355077607367956923}{135299081094075246446507195684077923558529549250738483054736790925726064649259282182644255500544711669303536283680375892} a^{7} + \frac{37848131951820191917282849791620175530535380827559980445376336415527538459670025060299106051633781541508919279305922651}{90199387396050164297671463789385282372353032833825655369824527283817376432839521455096170333696474446202357522453583928} a^{6} + \frac{2447296449613849890112592047798705164947680819901150247310717663215805397058031142398029437088506324337140368237442617}{90199387396050164297671463789385282372353032833825655369824527283817376432839521455096170333696474446202357522453583928} a^{5} - \frac{57477714573466231922425112672724198973625091356095353382350420792811490199081166414488761693060909442294038235354968489}{270598162188150492893014391368155847117059098501476966109473581851452129298518564365288511001089423338607072567360751784} a^{4} + \frac{21998546905051698555365816106728289047817629603705148551975686575748193685104958592666412642811952123523585269319754539}{90199387396050164297671463789385282372353032833825655369824527283817376432839521455096170333696474446202357522453583928} a^{3} + \frac{452949856514256736665808415436974585305430700865815487919084615519043238317918330478872589826835544109878578044640775}{2019389270060824573828465607225043635201933570906544523205026730234717382824765405711108291052906144317963228114632476} a^{2} - \frac{1491874648769568375923931899959262318618332342702554679857767046083233579482821571829249156305983433832737543315772845}{5011077077558342460981747988299182354019612935212536409434695960212076468491084525283120574094248580344575417914087996} a + \frac{5368254690514964886205318336906714571960999025414493017143580516153743690854066518233464106094873076260111024921354479}{11765137486441325777957147450789384657263439065281607222151025297889223012979068015882109173960409710374220546406989208}$
Class group and class number
$C_{2}\times C_{7414}\times C_{14828}$, which has order $219869584$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 141448785521 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}.C_2$ (as 16T40):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $OD_{16}.C_2$ |
| Character table for $OD_{16}.C_2$ |
Intermediate fields
| \(\Q(\sqrt{5017}) \), \(\Q(\sqrt{173}) \), \(\Q(\sqrt{29}) \), 4.4.126279339913.2, 4.4.126279339913.1, \(\Q(\sqrt{29}, \sqrt{173})\), 8.8.15946471688862994847569.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/23.1.0.1}{1} }^{8}$ | R | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $29$ | 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 29.8.7.2 | $x^{8} - 116$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ | |
| $173$ | 173.8.7.1 | $x^{8} - 173$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |
| 173.8.7.1 | $x^{8} - 173$ | $8$ | $1$ | $7$ | $C_8:C_2$ | $[\ ]_{8}^{2}$ |