Properties

Label 16.0.63949946033...0625.1
Degree $16$
Signature $[0, 8]$
Discriminant $3^{12}\cdot 5^{12}\cdot 149^{4}$
Root discriminant $26.63$
Ramified primes $3, 5, 149$
Class number $2$ (GRH)
Class group $[2]$ (GRH)
Galois group $C_2\wr C_4$ (as 16T157)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![625, -1875, 2750, -3000, 2900, -2325, 1550, -900, 340, 45, -140, 75, -4, -21, 16, -6, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 6*x^15 + 16*x^14 - 21*x^13 - 4*x^12 + 75*x^11 - 140*x^10 + 45*x^9 + 340*x^8 - 900*x^7 + 1550*x^6 - 2325*x^5 + 2900*x^4 - 3000*x^3 + 2750*x^2 - 1875*x + 625)
 
gp: K = bnfinit(x^16 - 6*x^15 + 16*x^14 - 21*x^13 - 4*x^12 + 75*x^11 - 140*x^10 + 45*x^9 + 340*x^8 - 900*x^7 + 1550*x^6 - 2325*x^5 + 2900*x^4 - 3000*x^3 + 2750*x^2 - 1875*x + 625, 1)
 

Normalized defining polynomial

\( x^{16} - 6 x^{15} + 16 x^{14} - 21 x^{13} - 4 x^{12} + 75 x^{11} - 140 x^{10} + 45 x^{9} + 340 x^{8} - 900 x^{7} + 1550 x^{6} - 2325 x^{5} + 2900 x^{4} - 3000 x^{3} + 2750 x^{2} - 1875 x + 625 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(63949946033164306640625=3^{12}\cdot 5^{12}\cdot 149^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $26.63$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $3, 5, 149$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{1}{5} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{9} + \frac{1}{5} a^{4}$, $\frac{1}{5} a^{10} + \frac{1}{5} a^{5}$, $\frac{1}{25} a^{11} - \frac{1}{25} a^{10} + \frac{1}{25} a^{9} - \frac{1}{25} a^{8} + \frac{6}{25} a^{7} - \frac{2}{5} a^{6} - \frac{1}{5} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{12} + \frac{1}{25} a^{7} + \frac{2}{5} a^{6} + \frac{2}{5} a^{4} - \frac{1}{5} a^{3}$, $\frac{1}{25} a^{13} + \frac{1}{25} a^{8} + \frac{2}{5} a^{7} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4}$, $\frac{1}{7625} a^{14} + \frac{49}{7625} a^{13} + \frac{96}{7625} a^{12} + \frac{39}{7625} a^{11} + \frac{286}{7625} a^{10} + \frac{27}{1525} a^{9} - \frac{74}{1525} a^{8} - \frac{673}{1525} a^{7} - \frac{512}{1525} a^{6} + \frac{14}{305} a^{5} + \frac{147}{305} a^{4} - \frac{131}{305} a^{3} + \frac{126}{305} a^{2} + \frac{30}{61} a + \frac{7}{61}$, $\frac{1}{984090125} a^{15} - \frac{12747}{196818025} a^{14} - \frac{102536}{7872721} a^{13} + \frac{3467414}{196818025} a^{12} + \frac{3778764}{196818025} a^{11} + \frac{89850826}{984090125} a^{10} + \frac{1220104}{39363605} a^{9} + \frac{1205522}{39363605} a^{8} + \frac{41417651}{196818025} a^{7} + \frac{61319548}{196818025} a^{6} - \frac{659685}{7872721} a^{5} - \frac{18393399}{39363605} a^{4} + \frac{8266099}{39363605} a^{3} - \frac{18459399}{39363605} a^{2} + \frac{30252}{7872721} a + \frac{3080959}{7872721}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}$, which has order $2$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 50934.7803671 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2\wr C_4$ (as 16T157):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 13 conjugacy class representatives for $C_2\wr C_4$
Character table for $C_2\wr C_4$

Intermediate fields

\(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 8.0.1697203125.1 x2, 8.8.28098140625.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 8 siblings: data not computed
Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ R R ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
3Data not computed
$5$5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
5.4.3.1$x^{4} - 5$$4$$1$$3$$C_4$$[\ ]_{4}$
$149$$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
$\Q_{149}$$x + 2$$1$$1$$0$Trivial$[\ ]$
149.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
149.2.1.2$x^{2} + 298$$2$$1$$1$$C_2$$[\ ]_{2}$
149.2.1.2$x^{2} + 298$$2$$1$$1$$C_2$$[\ ]_{2}$
149.2.0.1$x^{2} - x + 3$$1$$2$$0$$C_2$$[\ ]^{2}$
149.4.2.1$x^{4} + 745 x^{2} + 199809$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$