Normalized defining polynomial
\( x^{16} - x^{15} + 521 x^{14} - 1189 x^{13} + 106326 x^{12} - 313277 x^{11} + 11307728 x^{10} - 33795292 x^{9} + 673687947 x^{8} - 1741918829 x^{7} + 21895399022 x^{6} - 43319155511 x^{5} + 372148469851 x^{4} - 495918674948 x^{3} + 2949128684464 x^{2} - 2276308091503 x + 7959188855021 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6389325541442866097681925088134765625=5^{12}\cdot 29^{6}\cdot 89^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $199.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 89, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{19} a^{14} - \frac{9}{19} a^{13} + \frac{7}{19} a^{12} + \frac{1}{19} a^{11} - \frac{4}{19} a^{10} - \frac{8}{19} a^{9} + \frac{6}{19} a^{8} - \frac{7}{19} a^{7} + \frac{5}{19} a^{6} + \frac{8}{19} a^{5} - \frac{7}{19} a^{4} + \frac{6}{19}$, $\frac{1}{434432151720375339921670070669494024542594600043329657105169933425436386451461876673121959} a^{15} + \frac{10704804783365228943414617807546311836295161011613898797815989039159640202053393704351294}{434432151720375339921670070669494024542594600043329657105169933425436386451461876673121959} a^{14} + \frac{134662844048841260611137400365001390310889396898175181708232556089440323866510310537586127}{434432151720375339921670070669494024542594600043329657105169933425436386451461876673121959} a^{13} - \frac{66174396256663250228096160385172176895923550889621801712199427541551224623632073602479125}{434432151720375339921670070669494024542594600043329657105169933425436386451461876673121959} a^{12} - \frac{5794357254328978464132140795490187548255958863879816491633165988626112470082902497690210}{22864850090546070522193161614183896028557610528596297742377364917128230865866414561743261} a^{11} - \frac{62423279440980980833603824495977598205994944211651534068863740500862321689045530705747203}{434432151720375339921670070669494024542594600043329657105169933425436386451461876673121959} a^{10} + \frac{137268825486803754735460521884576575771770607575434087182222156313108112608296905228456725}{434432151720375339921670070669494024542594600043329657105169933425436386451461876673121959} a^{9} - \frac{131844036044092367010362158418481265931192603488606266841243970182336785523649292795656147}{434432151720375339921670070669494024542594600043329657105169933425436386451461876673121959} a^{8} + \frac{182344095813089303394834041131079686183182483330051037778759625128277028989289652380837281}{434432151720375339921670070669494024542594600043329657105169933425436386451461876673121959} a^{7} + \frac{212514224068245098819532323645234455015575173513628702890954474021189795957877761142968010}{434432151720375339921670070669494024542594600043329657105169933425436386451461876673121959} a^{6} + \frac{169601537362163993301907036631488487709513397788155636686657767280313957022564325260881}{8196833051327836602295661710745170274388577359308106737833394970291252574555884465530603} a^{5} + \frac{98008846433298488993732543879683843552691952391436132094389453387176384830842203490103031}{434432151720375339921670070669494024542594600043329657105169933425436386451461876673121959} a^{4} - \frac{1909062233790791227479545413815278017165729951554842485392690795281852664477371182081853}{22864850090546070522193161614183896028557610528596297742377364917128230865866414561743261} a^{3} - \frac{3746315814511294119598151344663144037320081115575834382225199327248499751837102388913277}{22864850090546070522193161614183896028557610528596297742377364917128230865866414561743261} a^{2} - \frac{214786018486905533442497407350804987640953970547704263371536090749816818770342718430082227}{434432151720375339921670070669494024542594600043329657105169933425436386451461876673121959} a - \frac{98259902315387733563754677269015772288903162651332026738396489924680685920475615543411882}{434432151720375339921670070669494024542594600043329657105169933425436386451461876673121959}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{1854276}$, which has order $29668416$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13998.0176198 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T486):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.64525.1, 4.4.725.1, 4.4.2225.1, 8.8.4163475625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.2.1.2 | $x^{2} + 267$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| $97$ | 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 97.8.4.2 | $x^{8} - 912673 x^{2} + 2036173463$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |