Normalized defining polynomial
\( x^{16} - 5 x^{15} + 571 x^{14} - 3253 x^{13} + 130172 x^{12} - 747076 x^{11} + 15260697 x^{10} - 77823720 x^{9} + 971305477 x^{8} - 3875600877 x^{7} + 31928083438 x^{6} - 85973445953 x^{5} + 492328618856 x^{4} - 723012409264 x^{3} + 3208121031533 x^{2} - 2034948668117 x + 7573496420461 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6389325541442866097681925088134765625=5^{12}\cdot 29^{6}\cdot 89^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $199.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 89, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} + \frac{2}{5} a^{11} + \frac{1}{5} a^{10} - \frac{1}{5} a^{9} + \frac{1}{5} a^{8} + \frac{1}{5} a^{7} + \frac{1}{5} a^{6} + \frac{2}{5} a^{5} - \frac{1}{5} a^{4} + \frac{2}{5} a^{2} + \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{5} a^{13} + \frac{2}{5} a^{11} + \frac{2}{5} a^{10} - \frac{2}{5} a^{9} - \frac{1}{5} a^{8} - \frac{1}{5} a^{7} + \frac{2}{5} a^{4} + \frac{2}{5} a^{3} + \frac{2}{5} a^{2} - \frac{1}{5} a - \frac{2}{5}$, $\frac{1}{145} a^{14} - \frac{9}{145} a^{13} - \frac{6}{145} a^{12} - \frac{32}{145} a^{11} + \frac{27}{145} a^{10} - \frac{9}{29} a^{9} + \frac{14}{29} a^{8} - \frac{1}{5} a^{7} - \frac{68}{145} a^{6} - \frac{34}{145} a^{5} + \frac{72}{145} a^{4} + \frac{34}{145} a^{3} - \frac{9}{29} a^{2} - \frac{26}{145} a - \frac{11}{29}$, $\frac{1}{5375865620420301517548616699472930771502214440732728507744828479000680517273922740799405} a^{15} + \frac{2587371127736052138653491817506940478859094719989179438162237120733119245206452496757}{5375865620420301517548616699472930771502214440732728507744828479000680517273922740799405} a^{14} - \frac{449142046828995148986183451210842266201601771490963689160916693410171548519620317204162}{5375865620420301517548616699472930771502214440732728507744828479000680517273922740799405} a^{13} - \frac{9280105814000372046122164435390230122552398892300871439258521281841804625064454174437}{1075173124084060303509723339894586154300442888146545701548965695800136103454784548159881} a^{12} + \frac{276865476228798878467870004327115627952586325645039205846968325252044239459450327434872}{5375865620420301517548616699472930771502214440732728507744828479000680517273922740799405} a^{11} - \frac{760994125347634295064950535527993197126052425295981321426354598654359872133353587347729}{5375865620420301517548616699472930771502214440732728507744828479000680517273922740799405} a^{10} - \frac{1996559392748201111471118454934038295089957151947063255560360924124419591306362663163049}{5375865620420301517548616699472930771502214440732728507744828479000680517273922740799405} a^{9} + \frac{1766863774285468577241262373702705497427205330638395903053144130666637113243972847322981}{5375865620420301517548616699472930771502214440732728507744828479000680517273922740799405} a^{8} - \frac{142924291988240363516100995482360438357525640618366749825931366828922515382608947002777}{5375865620420301517548616699472930771502214440732728507744828479000680517273922740799405} a^{7} + \frac{1797431812782271529777565137184661349879472052586859933663275335098030469568514016725506}{5375865620420301517548616699472930771502214440732728507744828479000680517273922740799405} a^{6} - \frac{513645062576291010241653350143716699741335163034041238831855967708399007989264814464376}{5375865620420301517548616699472930771502214440732728507744828479000680517273922740799405} a^{5} + \frac{645857107832173134967294041016942392895161435857351046675359104195088740910314973073169}{5375865620420301517548616699472930771502214440732728507744828479000680517273922740799405} a^{4} - \frac{36601644772948591182062468994963114301214336799843475943703877677095777294744226568786}{1075173124084060303509723339894586154300442888146545701548965695800136103454784548159881} a^{3} + \frac{36549971501261187497663968992739755928231236872886841062670468816730393315186015922554}{185374676566217293708572989636997612810421187611473396818787188931057948871514577268945} a^{2} - \frac{1209193653109594679058511090751417021585017346618707892235341016387181390357875107911196}{5375865620420301517548616699472930771502214440732728507744828479000680517273922740799405} a + \frac{362575117087940757006217149113660941448674721450856069607257850892291487025019118272102}{5375865620420301517548616699472930771502214440732728507744828479000680517273922740799405}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{1658616}$, which has order $26537856$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 13998.0176198 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T486):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.64525.1, 4.4.725.1, 4.4.2225.1, 8.8.4163475625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.1.2 | $x^{2} + 58$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 29.4.2.1 | $x^{4} + 145 x^{2} + 7569$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $89$ | 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 89.4.2.2 | $x^{4} - 89 x^{2} + 47526$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 89.4.0.1 | $x^{4} - x + 27$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 89.4.2.1 | $x^{4} + 979 x^{2} + 285156$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $97$ | 97.8.0.1 | $x^{8} - x + 84$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ |
| 97.8.4.2 | $x^{8} - 912673 x^{2} + 2036173463$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |