Normalized defining polynomial
\( x^{16} - x^{15} + 64 x^{14} + 320 x^{13} - 2278 x^{12} - 14002 x^{11} - 143032 x^{10} - 1270944 x^{9} - 2564467 x^{8} + 11757259 x^{7} + 259046624 x^{6} + 2375245912 x^{5} + 13322733808 x^{4} + 53673234160 x^{3} + 167744328448 x^{2} + 361157329920 x + 401292214272 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6386440838157604973770860952468990607569=17^{14}\cdot 41^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $307.49$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $17, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(697=17\cdot 41\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{697}(1,·)$, $\chi_{697}(132,·)$, $\chi_{697}(325,·)$, $\chi_{697}(519,·)$, $\chi_{697}(202,·)$, $\chi_{697}(409,·)$, $\chi_{697}(314,·)$, $\chi_{697}(288,·)$, $\chi_{697}(495,·)$, $\chi_{697}(178,·)$, $\chi_{697}(372,·)$, $\chi_{697}(565,·)$, $\chi_{697}(696,·)$, $\chi_{697}(378,·)$, $\chi_{697}(319,·)$, $\chi_{697}(383,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $\frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{8} a^{4} - \frac{1}{4} a^{3} - \frac{1}{8} a^{2} + \frac{1}{4} a$, $\frac{1}{8} a^{5} - \frac{1}{8} a^{3}$, $\frac{1}{16} a^{6} - \frac{1}{16} a^{5} - \frac{1}{16} a^{4} - \frac{3}{16} a^{3} + \frac{1}{4} a$, $\frac{1}{32} a^{7} - \frac{1}{16} a^{5} + \frac{5}{32} a^{3} - \frac{1}{8} a$, $\frac{1}{128} a^{8} + \frac{1}{64} a^{6} + \frac{1}{128} a^{4} - \frac{1}{32} a^{2}$, $\frac{1}{384} a^{9} - \frac{1}{64} a^{7} - \frac{5}{128} a^{5} - \frac{1}{32} a^{3} + \frac{1}{12} a$, $\frac{1}{1536} a^{10} + \frac{1}{1536} a^{9} + \frac{3}{256} a^{7} + \frac{15}{512} a^{6} - \frac{5}{512} a^{5} - \frac{9}{256} a^{4} - \frac{11}{128} a^{3} + \frac{1}{192} a^{2} + \frac{1}{12} a$, $\frac{1}{3072} a^{11} + \frac{1}{1024} a^{9} + \frac{1}{512} a^{8} - \frac{15}{1024} a^{7} - \frac{7}{256} a^{6} + \frac{63}{1024} a^{5} - \frac{15}{512} a^{4} - \frac{85}{768} a^{3} + \frac{7}{128} a^{2} + \frac{1}{16} a$, $\frac{1}{6144} a^{12} - \frac{1}{6144} a^{10} - \frac{1}{1024} a^{9} + \frac{1}{2048} a^{8} + \frac{7}{512} a^{7} + \frac{35}{2048} a^{6} + \frac{15}{1024} a^{5} - \frac{19}{1536} a^{4} - \frac{7}{256} a^{3} - \frac{1}{192} a^{2}$, $\frac{1}{15704064} a^{13} - \frac{1}{36864} a^{12} - \frac{1061}{15704064} a^{11} - \frac{391}{1963008} a^{10} - \frac{75}{581632} a^{9} + \frac{925}{2617344} a^{8} - \frac{2689}{5234688} a^{7} + \frac{36515}{1308672} a^{6} - \frac{23867}{490752} a^{5} - \frac{829}{327168} a^{4} + \frac{106415}{981504} a^{3} - \frac{2689}{15336} a^{2} - \frac{35}{639} a - \frac{61}{213}$, $\frac{1}{125632512} a^{14} - \frac{1}{41877504} a^{13} - \frac{10007}{125632512} a^{12} - \frac{2075}{125632512} a^{11} - \frac{1549}{13959168} a^{10} + \frac{4301}{41877504} a^{9} + \frac{133193}{41877504} a^{8} - \frac{510859}{41877504} a^{7} - \frac{50489}{3926016} a^{6} + \frac{34951}{5234688} a^{5} - \frac{351955}{7852032} a^{4} - \frac{401029}{7852032} a^{3} - \frac{39709}{163584} a^{2} - \frac{93}{4544} a - \frac{5}{284}$, $\frac{1}{390550049849640951596640026650346165306916864} a^{15} + \frac{241236621994150053105882591592480753}{97637512462410237899160006662586541326729216} a^{14} - \frac{38268708546371205792665266644869273}{32545837487470079299720002220862180442243072} a^{13} + \frac{2589477946867598103253240237334615068169}{97637512462410237899160006662586541326729216} a^{12} - \frac{9147395984148101725395293137928089344275}{65091674974940158599440004441724360884486144} a^{11} - \frac{1324684088056857973682577572501984153899}{97637512462410237899160006662586541326729216} a^{10} + \frac{2741336796252288318698553654528146815513}{32545837487470079299720002220862180442243072} a^{9} - \frac{77007997808190397666269566014162486199179}{32545837487470079299720002220862180442243072} a^{8} + \frac{3049141190076283961276011184000974580382521}{390550049849640951596640026650346165306916864} a^{7} - \frac{429557047270935034895823608467948059791939}{48818756231205118949580003331293270663364608} a^{6} - \frac{161493294282525043158776454304011865661585}{16272918743735039649860001110431090221121536} a^{5} + \frac{744889153154001753654505782542192106064931}{12204689057801279737395000832823317665841152} a^{4} - \frac{1491173780945603712531231075904558728039025}{8136459371867519824930000555215545110560768} a^{3} - \frac{366999502353327989671744822651010496416411}{1525586132225159967174375104102914708230144} a^{2} - \frac{16863361666872984606930930394806974424959}{127132177685429997264531258675242892352512} a - \frac{670645520459520277634073307696538908345}{2648587035113124943011067889067560257344}$
Class group and class number
$C_{17}\times C_{22055052}$, which has order $374935884$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3288669416.54 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 17 | Data not computed | ||||||
| 41 | Data not computed | ||||||