Properties

Label 16.0.63456228123...0000.7
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}$
Root discriminant $40.99$
Ramified primes $2, 3, 5, 7$
Class number $32$ (GRH)
Class group $[2, 2, 2, 4]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![365481, -171900, -40716, -481080, 465079, -62260, -11434, -480, -6396, -140, 104, 280, 119, -20, 6, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 6*x^14 - 20*x^13 + 119*x^12 + 280*x^11 + 104*x^10 - 140*x^9 - 6396*x^8 - 480*x^7 - 11434*x^6 - 62260*x^5 + 465079*x^4 - 481080*x^3 - 40716*x^2 - 171900*x + 365481)
 
gp: K = bnfinit(x^16 + 6*x^14 - 20*x^13 + 119*x^12 + 280*x^11 + 104*x^10 - 140*x^9 - 6396*x^8 - 480*x^7 - 11434*x^6 - 62260*x^5 + 465079*x^4 - 481080*x^3 - 40716*x^2 - 171900*x + 365481, 1)
 

Normalized defining polynomial

\( x^{16} + 6 x^{14} - 20 x^{13} + 119 x^{12} + 280 x^{11} + 104 x^{10} - 140 x^{9} - 6396 x^{8} - 480 x^{7} - 11434 x^{6} - 62260 x^{5} + 465079 x^{4} - 481080 x^{3} - 40716 x^{2} - 171900 x + 365481 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(63456228123711897600000000=2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(391,·)$, $\chi_{840}(139,·)$, $\chi_{840}(589,·)$, $\chi_{840}(659,·)$, $\chi_{840}(281,·)$, $\chi_{840}(601,·)$, $\chi_{840}(29,·)$, $\chi_{840}(671,·)$, $\chi_{840}(419,·)$, $\chi_{840}(41,·)$, $\chi_{840}(71,·)$, $\chi_{840}(349,·)$, $\chi_{840}(629,·)$, $\chi_{840}(631,·)$, $\chi_{840}(379,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{4440} a^{12} + \frac{31}{111} a^{11} + \frac{1}{148} a^{10} + \frac{21}{74} a^{9} + \frac{143}{444} a^{8} + \frac{2}{37} a^{7} + \frac{239}{740} a^{6} + \frac{19}{111} a^{5} - \frac{17}{444} a^{4} - \frac{17}{37} a^{3} + \frac{47}{222} a^{2} - \frac{31}{74} a + \frac{643}{1480}$, $\frac{1}{4440} a^{13} - \frac{133}{444} a^{11} - \frac{7}{74} a^{10} + \frac{191}{444} a^{9} - \frac{35}{111} a^{8} + \frac{219}{740} a^{7} - \frac{35}{111} a^{6} - \frac{43}{148} a^{5} + \frac{2}{111} a^{4} - \frac{13}{222} a^{3} + \frac{13}{222} a^{2} - \frac{157}{1480} a + \frac{10}{37}$, $\frac{1}{1272321960} a^{14} - \frac{20701}{212053660} a^{13} + \frac{433}{254464392} a^{12} - \frac{1060315}{10602683} a^{11} + \frac{9426149}{31808049} a^{10} + \frac{15851305}{31808049} a^{9} + \frac{5693927}{106026830} a^{8} + \frac{55941049}{318080490} a^{7} + \frac{349677}{3029338} a^{6} + \frac{26030419}{63616098} a^{5} - \frac{3576155}{18176028} a^{4} + \frac{2366443}{9088014} a^{3} + \frac{2318423}{424107320} a^{2} + \frac{78809}{644540} a - \frac{35141935}{84821464}$, $\frac{1}{124912285448691547937296617360} a^{15} + \frac{986836571211787031}{124912285448691547937296617360} a^{14} - \frac{1959703052793832264395637}{17844612206955935419613802480} a^{13} + \frac{74827660225593390543763}{1125335904943167098534203760} a^{12} - \frac{234826719804825738638087131}{6245614272434577396864830868} a^{11} - \frac{391954985869854236991225332}{1561403568108644349216207717} a^{10} + \frac{837429767646476952916060399}{2230576525869491927451725310} a^{9} + \frac{55786281066949374943698079}{2230576525869491927451725310} a^{8} - \frac{10887161009922641831234616709}{31228071362172886984324154340} a^{7} + \frac{1496035989669727946754185402}{7807017840543221746081038585} a^{6} + \frac{5307306359750418293005510687}{12491228544869154793729661736} a^{5} + \frac{20253682732957339187131633}{45755415915271629281061032} a^{4} - \frac{1555265059883080819267270763}{3376007714829501295602611280} a^{3} + \frac{47657801249344096497280965239}{124912285448691547937296617360} a^{2} - \frac{19593521449699954503685742007}{41637428482897182645765539120} a + \frac{17021625326570121984172235749}{41637428482897182645765539120}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{4}$, which has order $32$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{1467357934192016651}{67286905149172920000720} a^{15} + \frac{651745410777945}{18518678245776393776} a^{14} + \frac{23162236854348527987}{124961395277035422858480} a^{13} - \frac{3193086318467588281}{23641345052412107027280} a^{12} + \frac{25795501061315699926}{10934122086740599500117} a^{11} + \frac{435570573732561990955}{43736488346962398000468} a^{10} + \frac{562440962005168190339}{31240348819258855714620} a^{9} + \frac{160138381319918199059}{6248069763851771142924} a^{8} - \frac{3587229231676385922161}{36447073622468665000390} a^{7} - \frac{37280335080477611752927}{218682441734811990002340} a^{6} - \frac{45157573908981549402761}{87472976693924796000936} a^{5} - \frac{27546666565331648514991}{12496139527703542285848} a^{4} + \frac{156653802679016612542171}{23641345052412107027280} a^{3} + \frac{67370715274015358573351}{174945953387849592001872} a^{2} - \frac{348998779758906887896803}{291576588979749320003120} a - \frac{1242442843562157995682681}{291576588979749320003120} \) (order $12$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 829665.224905 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{70}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{210}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{30}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-21}) \), \(\Q(i, \sqrt{70})\), \(\Q(\zeta_{12})\), \(\Q(i, \sqrt{210})\), \(\Q(\sqrt{3}, \sqrt{-70})\), \(\Q(\sqrt{-3}, \sqrt{-70})\), \(\Q(\sqrt{3}, \sqrt{70})\), \(\Q(\sqrt{-3}, \sqrt{70})\), \(\Q(i, \sqrt{10})\), \(\Q(i, \sqrt{7})\), \(\Q(i, \sqrt{30})\), \(\Q(i, \sqrt{21})\), \(\Q(\sqrt{7}, \sqrt{-10})\), \(\Q(\sqrt{-7}, \sqrt{10})\), \(\Q(\sqrt{21}, \sqrt{-30})\), \(\Q(\sqrt{-21}, \sqrt{30})\), \(\Q(\sqrt{-7}, \sqrt{-10})\), \(\Q(\sqrt{7}, \sqrt{10})\), \(\Q(\sqrt{-21}, \sqrt{-30})\), \(\Q(\sqrt{21}, \sqrt{30})\), \(\Q(\sqrt{3}, \sqrt{-10})\), \(\Q(\sqrt{3}, \sqrt{10})\), \(\Q(\sqrt{3}, \sqrt{7})\), \(\Q(\sqrt{3}, \sqrt{-7})\), \(\Q(\sqrt{-3}, \sqrt{-10})\), \(\Q(\sqrt{-3}, \sqrt{10})\), \(\Q(\sqrt{-3}, \sqrt{7})\), \(\Q(\sqrt{-3}, \sqrt{-7})\), \(\Q(\sqrt{-10}, \sqrt{21})\), \(\Q(\sqrt{10}, \sqrt{-21})\), \(\Q(\sqrt{7}, \sqrt{-30})\), \(\Q(\sqrt{-7}, \sqrt{30})\), \(\Q(\sqrt{-10}, \sqrt{-21})\), \(\Q(\sqrt{10}, \sqrt{21})\), \(\Q(\sqrt{7}, \sqrt{30})\), \(\Q(\sqrt{-7}, \sqrt{-30})\), 8.0.7965941760000.70, 8.0.98344960000.7, 8.0.7965941760000.21, 8.0.3317760000.2, 8.0.49787136.1, 8.0.7965941760000.39, 8.0.7965941760000.65, 8.0.7965941760000.60, 8.0.7965941760000.43, 8.0.7965941760000.48, 8.0.497871360000.16, 8.0.7965941760000.19, 8.8.7965941760000.1, 8.0.497871360000.18, 8.0.7965941760000.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$