Properties

Label 16.0.63456228123...0000.6
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}$
Root discriminant $40.99$
Ramified primes $2, 3, 5, 7$
Class number $64$ (GRH)
Class group $[2, 2, 2, 8]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![736164, 628056, 817764, 517656, 422866, 204360, 164762, 34392, 48381, 1452, 8542, -144, 840, -12, 44, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 + 44*x^14 - 12*x^13 + 840*x^12 - 144*x^11 + 8542*x^10 + 1452*x^9 + 48381*x^8 + 34392*x^7 + 164762*x^6 + 204360*x^5 + 422866*x^4 + 517656*x^3 + 817764*x^2 + 628056*x + 736164)
 
gp: K = bnfinit(x^16 + 44*x^14 - 12*x^13 + 840*x^12 - 144*x^11 + 8542*x^10 + 1452*x^9 + 48381*x^8 + 34392*x^7 + 164762*x^6 + 204360*x^5 + 422866*x^4 + 517656*x^3 + 817764*x^2 + 628056*x + 736164, 1)
 

Normalized defining polynomial

\( x^{16} + 44 x^{14} - 12 x^{13} + 840 x^{12} - 144 x^{11} + 8542 x^{10} + 1452 x^{9} + 48381 x^{8} + 34392 x^{7} + 164762 x^{6} + 204360 x^{5} + 422866 x^{4} + 517656 x^{3} + 817764 x^{2} + 628056 x + 736164 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(63456228123711897600000000=2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(839,·)$, $\chi_{840}(589,·)$, $\chi_{840}(461,·)$, $\chi_{840}(209,·)$, $\chi_{840}(211,·)$, $\chi_{840}(251,·)$, $\chi_{840}(41,·)$, $\chi_{840}(799,·)$, $\chi_{840}(419,·)$, $\chi_{840}(421,·)$, $\chi_{840}(169,·)$, $\chi_{840}(629,·)$, $\chi_{840}(631,·)$, $\chi_{840}(379,·)$, $\chi_{840}(671,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{5}$, $\frac{1}{23789766} a^{14} + \frac{724445}{7929922} a^{13} - \frac{20188}{99957} a^{12} - \frac{1044513}{7929922} a^{11} - \frac{626988}{3964961} a^{10} + \frac{982077}{3964961} a^{9} + \frac{1664972}{11894883} a^{8} - \frac{155489}{609994} a^{7} + \frac{1017179}{7929922} a^{6} + \frac{2915785}{7929922} a^{5} + \frac{4396663}{11894883} a^{4} + \frac{246010}{566423} a^{3} - \frac{3956989}{11894883} a^{2} + \frac{57947}{566423} a - \frac{6733}{27727}$, $\frac{1}{12201263055573746225272329382254} a^{15} + \frac{16003780233731838280445}{1355695895063749580585814375806} a^{14} + \frac{87757234586848241111195719663}{717721356210220366192489963662} a^{13} + \frac{8695063472039664341144234113}{2033543842595624370878721563709} a^{12} + \frac{446374932219454572232601052001}{2033543842595624370878721563709} a^{11} + \frac{142565924399622794325062805588}{677847947531874790292907187903} a^{10} - \frac{256457453482915109414296149775}{1109205732324886020479302671114} a^{9} + \frac{63926375507485637335338723535}{312852898860865287827495625186} a^{8} - \frac{174141801192854987074307898413}{4067087685191248741757443127418} a^{7} - \frac{880160677672769617266537929441}{4067087685191248741757443127418} a^{6} + \frac{995663050040593296656534516170}{6100631527786873112636164691127} a^{5} - \frac{916930346637894702341798901385}{4067087685191248741757443127418} a^{4} - \frac{28937604785974717201932359519}{554602866162443010239651335557} a^{3} - \frac{255518080691255028749850019009}{2033543842595624370878721563709} a^{2} + \frac{69119664909408097041375926486}{156426449430432643913747812593} a + \frac{48266142522729395189942423}{278835025722696334962117313}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{8}$, which has order $64$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( \frac{23312117946968840959975}{2380269811855978584719533629} a^{15} - \frac{431717345312550720390703}{17455311953610509621276579946} a^{14} + \frac{19121967307352111460880421}{52365935860831528863829739838} a^{13} - \frac{3338296112225062870847282}{2909218658935084936879429991} a^{12} + \frac{105537766304761498579742363}{17455311953610509621276579946} a^{11} - \frac{108540161510402356509459683}{5818437317870169873758859982} a^{10} + \frac{1241643006454052571896124956}{26182967930415764431914869919} a^{9} - \frac{405308877546574223623206483}{2909218658935084936879429991} a^{8} + \frac{131836313976680372559457481}{1026783056094735860075092938} a^{7} - \frac{4079603207347886872302874822}{8727655976805254810638289973} a^{6} - \frac{11983184904968195720400683059}{52365935860831528863829739838} a^{5} - \frac{2987225736731180144086758910}{2909218658935084936879429991} a^{4} - \frac{2945248416289971647771336584}{2014074456185828033224220763} a^{3} - \frac{8435657715617653867010822708}{2909218658935084936879429991} a^{2} - \frac{23384912391110308026722822395}{8727655976805254810638289973} a - \frac{85628478767291946194072293}{20344186426119475083072937} \) (order $8$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 288389.039928 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{210}) \), \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{42}) \), \(\Q(\sqrt{-5}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{-10}) \), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{105})\), \(\Q(i, \sqrt{210})\), \(\Q(\sqrt{-2}, \sqrt{-105})\), \(\Q(\sqrt{-2}, \sqrt{105})\), \(\Q(\sqrt{2}, \sqrt{-105})\), \(\Q(\sqrt{2}, \sqrt{105})\), \(\Q(i, \sqrt{21})\), \(\Q(i, \sqrt{42})\), \(\Q(i, \sqrt{5})\), \(\Q(i, \sqrt{10})\), \(\Q(\sqrt{-2}, \sqrt{21})\), \(\Q(\sqrt{-2}, \sqrt{-21})\), \(\Q(\sqrt{-2}, \sqrt{-5})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{21})\), \(\Q(\sqrt{2}, \sqrt{-21})\), \(\Q(\sqrt{2}, \sqrt{-5})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{-5}, \sqrt{21})\), \(\Q(\sqrt{5}, \sqrt{-21})\), \(\Q(\sqrt{10}, \sqrt{-42})\), \(\Q(\sqrt{-10}, \sqrt{42})\), \(\Q(\sqrt{5}, \sqrt{21})\), \(\Q(\sqrt{-5}, \sqrt{-21})\), \(\Q(\sqrt{-10}, \sqrt{-42})\), \(\Q(\sqrt{10}, \sqrt{42})\), \(\Q(\sqrt{10}, \sqrt{21})\), \(\Q(\sqrt{-10}, \sqrt{-21})\), \(\Q(\sqrt{-5}, \sqrt{-42})\), \(\Q(\sqrt{5}, \sqrt{42})\), \(\Q(\sqrt{-10}, \sqrt{21})\), \(\Q(\sqrt{10}, \sqrt{-21})\), \(\Q(\sqrt{5}, \sqrt{-42})\), \(\Q(\sqrt{-5}, \sqrt{42})\), 8.0.7965941760000.69, 8.0.12745506816.8, 8.0.40960000.1, 8.0.31116960000.8, 8.0.7965941760000.13, 8.0.7965941760000.39, 8.0.7965941760000.68, 8.0.7965941760000.12, 8.0.7965941760000.55, 8.0.497871360000.13, 8.0.7965941760000.4, 8.0.7965941760000.40, 8.0.7965941760000.62, 8.8.497871360000.1, 8.0.7965941760000.33

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$