Properties

Label 16.0.63456228123...000.22
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}$
Root discriminant $40.99$
Ramified primes $2, 3, 5, 7$
Class number $128$ (GRH)
Class group $[2, 2, 2, 16]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![80644, 74504, -60356, -44152, 70130, -83224, 76638, -55468, 33053, -16472, 7338, -2684, 872, -224, 52, -8, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 8*x^15 + 52*x^14 - 224*x^13 + 872*x^12 - 2684*x^11 + 7338*x^10 - 16472*x^9 + 33053*x^8 - 55468*x^7 + 76638*x^6 - 83224*x^5 + 70130*x^4 - 44152*x^3 - 60356*x^2 + 74504*x + 80644)
 
gp: K = bnfinit(x^16 - 8*x^15 + 52*x^14 - 224*x^13 + 872*x^12 - 2684*x^11 + 7338*x^10 - 16472*x^9 + 33053*x^8 - 55468*x^7 + 76638*x^6 - 83224*x^5 + 70130*x^4 - 44152*x^3 - 60356*x^2 + 74504*x + 80644, 1)
 

Normalized defining polynomial

\( x^{16} - 8 x^{15} + 52 x^{14} - 224 x^{13} + 872 x^{12} - 2684 x^{11} + 7338 x^{10} - 16472 x^{9} + 33053 x^{8} - 55468 x^{7} + 76638 x^{6} - 83224 x^{5} + 70130 x^{4} - 44152 x^{3} - 60356 x^{2} + 74504 x + 80644 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(63456228123711897600000000=2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(391,·)$, $\chi_{840}(209,·)$, $\chi_{840}(211,·)$, $\chi_{840}(559,·)$, $\chi_{840}(349,·)$, $\chi_{840}(419,·)$, $\chi_{840}(379,·)$, $\chi_{840}(41,·)$, $\chi_{840}(71,·)$, $\chi_{840}(29,·)$, $\chi_{840}(239,·)$, $\chi_{840}(181,·)$, $\chi_{840}(169,·)$, $\chi_{840}(251,·)$, $\chi_{840}(701,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{7} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{9} + \frac{1}{3} a^{7} + \frac{1}{3} a^{6} - \frac{1}{6} a^{5} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{3} a^{7} - \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} - \frac{1}{3}$, $\frac{1}{30} a^{12} - \frac{1}{30} a^{11} - \frac{1}{15} a^{10} + \frac{1}{30} a^{8} - \frac{1}{6} a^{7} + \frac{2}{15} a^{6} - \frac{4}{15} a^{5} + \frac{1}{15} a^{3} - \frac{2}{5} a^{2} + \frac{1}{3} a + \frac{1}{5}$, $\frac{1}{30} a^{13} + \frac{1}{15} a^{11} - \frac{1}{15} a^{10} + \frac{1}{30} a^{9} + \frac{1}{30} a^{8} - \frac{1}{5} a^{7} - \frac{7}{15} a^{6} + \frac{1}{15} a^{5} + \frac{7}{30} a^{4} + \frac{1}{3} a^{3} - \frac{2}{5} a^{2} - \frac{2}{15} a + \frac{1}{5}$, $\frac{1}{17192112494850} a^{14} - \frac{7}{17192112494850} a^{13} + \frac{2972516293}{217621677150} a^{12} - \frac{1408972722791}{17192112494850} a^{11} - \frac{109084385629}{3438422498970} a^{10} + \frac{219322086739}{2865352082475} a^{9} - \frac{202941579814}{8596056247425} a^{8} + \frac{1152054225293}{17192112494850} a^{7} - \frac{470195529028}{1719211249485} a^{6} + \frac{1770374625421}{5730704164950} a^{5} - \frac{4712376513739}{17192112494850} a^{4} - \frac{4232135926426}{8596056247425} a^{3} + \frac{9571203907}{343842249897} a^{2} + \frac{142486766527}{8596056247425} a + \frac{2041049939944}{8596056247425}$, $\frac{1}{1391340472095715650} a^{15} + \frac{1759}{60493064004161550} a^{14} - \frac{3995042994342943}{695670236047857825} a^{13} - \frac{8129235222658763}{1391340472095715650} a^{12} + \frac{48901737275215283}{695670236047857825} a^{11} - \frac{5945953754603999}{154593385788412850} a^{10} - \frac{53110370184874787}{1391340472095715650} a^{9} - \frac{10949669043702407}{695670236047857825} a^{8} + \frac{198081981212008607}{1391340472095715650} a^{7} + \frac{115706673043213448}{231890078682619275} a^{6} - \frac{276528493090195987}{1391340472095715650} a^{5} - \frac{202879848353052893}{1391340472095715650} a^{4} + \frac{347340276222432856}{695670236047857825} a^{3} + \frac{103578240890543992}{695670236047857825} a^{2} - \frac{132740055673654058}{695670236047857825} a + \frac{29020428766740332}{231890078682619275}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}\times C_{16}$, which has order $128$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 31712.813565 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{35}) \), \(\Q(\sqrt{-70}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{21}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{-10}) \), \(\Q(\sqrt{-2}, \sqrt{35})\), \(\Q(\sqrt{3}, \sqrt{35})\), \(\Q(\sqrt{-6}, \sqrt{35})\), \(\Q(\sqrt{3}, \sqrt{-70})\), \(\Q(\sqrt{-6}, \sqrt{-70})\), \(\Q(\sqrt{-2}, \sqrt{3})\), \(\Q(\sqrt{-2}, \sqrt{105})\), \(\Q(\sqrt{15}, \sqrt{21})\), \(\Q(\sqrt{-30}, \sqrt{35})\), \(\Q(\sqrt{5}, \sqrt{7})\), \(\Q(\sqrt{-10}, \sqrt{-14})\), \(\Q(\sqrt{15}, \sqrt{-42})\), \(\Q(\sqrt{21}, \sqrt{-30})\), \(\Q(\sqrt{5}, \sqrt{-14})\), \(\Q(\sqrt{7}, \sqrt{-10})\), \(\Q(\sqrt{-2}, \sqrt{15})\), \(\Q(\sqrt{-2}, \sqrt{21})\), \(\Q(\sqrt{-2}, \sqrt{5})\), \(\Q(\sqrt{-2}, \sqrt{7})\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\sqrt{3}, \sqrt{7})\), \(\Q(\sqrt{3}, \sqrt{-14})\), \(\Q(\sqrt{3}, \sqrt{-10})\), \(\Q(\sqrt{7}, \sqrt{15})\), \(\Q(\sqrt{5}, \sqrt{21})\), \(\Q(\sqrt{-10}, \sqrt{-42})\), \(\Q(\sqrt{-14}, \sqrt{-30})\), \(\Q(\sqrt{-14}, \sqrt{15})\), \(\Q(\sqrt{-10}, \sqrt{21})\), \(\Q(\sqrt{5}, \sqrt{-42})\), \(\Q(\sqrt{7}, \sqrt{-30})\), \(\Q(\sqrt{-6}, \sqrt{-10})\), \(\Q(\sqrt{-6}, \sqrt{-14})\), \(\Q(\sqrt{-6}, \sqrt{7})\), \(\Q(\sqrt{5}, \sqrt{-6})\), 8.0.7965941760000.57, 8.0.7965941760000.28, 8.0.98344960000.6, 8.8.31116960000.1, 8.0.7965941760000.22, 8.0.7965941760000.46, 8.0.7965941760000.59, 8.0.7965941760000.53, 8.0.7965941760000.60, 8.0.7965941760000.20, 8.0.497871360000.6, 8.0.3317760000.7, 8.0.12745506816.3, 8.0.7965941760000.24, 8.0.497871360000.13

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$