Normalized defining polynomial
\( x^{16} - 8 x^{15} + 20 x^{14} - 48 x^{12} - 76 x^{11} + 998 x^{10} - 3340 x^{9} + 8969 x^{8} - 18388 x^{7} + 34410 x^{6} - 50244 x^{5} + 70504 x^{4} - 73380 x^{3} + 78354 x^{2} - 47772 x + 37809 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(63456228123711897600000000=2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(840=2^{3}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(491,·)$, $\chi_{840}(769,·)$, $\chi_{840}(589,·)$, $\chi_{840}(659,·)$, $\chi_{840}(601,·)$, $\chi_{840}(349,·)$, $\chi_{840}(671,·)$, $\chi_{840}(419,·)$, $\chi_{840}(421,·)$, $\chi_{840}(169,·)$, $\chi_{840}(71,·)$, $\chi_{840}(239,·)$, $\chi_{840}(839,·)$, $\chi_{840}(181,·)$, $\chi_{840}(251,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{7} - \frac{1}{2} a^{3}$, $\frac{1}{210} a^{12} - \frac{1}{35} a^{11} + \frac{1}{210} a^{10} + \frac{5}{21} a^{9} + \frac{9}{35} a^{7} - \frac{73}{210} a^{6} + \frac{16}{35} a^{5} - \frac{2}{5} a^{4} + \frac{4}{105} a^{3} - \frac{83}{210} a^{2} + \frac{6}{35} a - \frac{23}{70}$, $\frac{1}{210} a^{13} - \frac{1}{6} a^{11} - \frac{7}{30} a^{10} - \frac{1}{14} a^{9} - \frac{17}{70} a^{8} + \frac{41}{210} a^{7} - \frac{9}{70} a^{6} - \frac{11}{70} a^{5} + \frac{29}{210} a^{4} - \frac{1}{6} a^{3} + \frac{3}{10} a^{2} + \frac{1}{5} a - \frac{33}{70}$, $\frac{1}{434466595290} a^{14} - \frac{1}{62066656470} a^{13} + \frac{49390097}{43446659529} a^{12} - \frac{2963405729}{434466595290} a^{11} - \frac{83297158117}{434466595290} a^{10} + \frac{4591873822}{217233297645} a^{9} - \frac{6759758179}{33420507330} a^{8} - \frac{170659118579}{434466595290} a^{7} - \frac{27731684257}{62066656470} a^{6} - \frac{18289827721}{43446659529} a^{5} + \frac{6966363791}{62066656470} a^{4} + \frac{190766134933}{434466595290} a^{3} - \frac{20203316317}{217233297645} a^{2} + \frac{26182771009}{144822198430} a + \frac{47738734191}{144822198430}$, $\frac{1}{18477429831088410} a^{15} + \frac{21257}{18477429831088410} a^{14} + \frac{5721938389038}{3079571638514735} a^{13} - \frac{18338759381248}{9238714915544205} a^{12} + \frac{239182448807404}{3079571638514735} a^{11} + \frac{134137927364201}{3695485966217682} a^{10} - \frac{1175622207638618}{9238714915544205} a^{9} + \frac{7472820227632}{174315375764985} a^{8} - \frac{701951373521176}{9238714915544205} a^{7} + \frac{7613142147869813}{18477429831088410} a^{6} - \frac{1133913017532899}{9238714915544205} a^{5} - \frac{1480201361514102}{3079571638514735} a^{4} - \frac{7033285022649553}{18477429831088410} a^{3} - \frac{13535337192743}{615914327702947} a^{2} + \frac{313461579418961}{3079571638514735} a - \frac{686643557446519}{3079571638514735}$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{8}$, which has order $256$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 15197.4244561 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_2^4$ |
| Character table for $C_2^4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |