Properties

Label 16.0.63456228123...000.14
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}$
Root discriminant $40.99$
Ramified primes $2, 3, 5, 7$
Class number $128$ (GRH)
Class group $[2, 2, 4, 8]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![961, -3100, 9876, -11064, 18363, -8448, 25000, -7192, 10176, -2628, 2958, -660, 383, -56, 30, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 30*x^14 - 56*x^13 + 383*x^12 - 660*x^11 + 2958*x^10 - 2628*x^9 + 10176*x^8 - 7192*x^7 + 25000*x^6 - 8448*x^5 + 18363*x^4 - 11064*x^3 + 9876*x^2 - 3100*x + 961)
 
gp: K = bnfinit(x^16 - 4*x^15 + 30*x^14 - 56*x^13 + 383*x^12 - 660*x^11 + 2958*x^10 - 2628*x^9 + 10176*x^8 - 7192*x^7 + 25000*x^6 - 8448*x^5 + 18363*x^4 - 11064*x^3 + 9876*x^2 - 3100*x + 961, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 30 x^{14} - 56 x^{13} + 383 x^{12} - 660 x^{11} + 2958 x^{10} - 2628 x^{9} + 10176 x^{8} - 7192 x^{7} + 25000 x^{6} - 8448 x^{5} + 18363 x^{4} - 11064 x^{3} + 9876 x^{2} - 3100 x + 961 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(63456228123711897600000000=2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(391,·)$, $\chi_{840}(139,·)$, $\chi_{840}(589,·)$, $\chi_{840}(281,·)$, $\chi_{840}(29,·)$, $\chi_{840}(671,·)$, $\chi_{840}(419,·)$, $\chi_{840}(421,·)$, $\chi_{840}(839,·)$, $\chi_{840}(169,·)$, $\chi_{840}(811,·)$, $\chi_{840}(559,·)$, $\chi_{840}(449,·)$, $\chi_{840}(251,·)$, $\chi_{840}(701,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a + \frac{1}{3}$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} - \frac{2}{9} a^{5} - \frac{2}{9} a^{4} + \frac{4}{9} a^{3} - \frac{4}{9} a^{2} - \frac{1}{9} a - \frac{4}{9}$, $\frac{1}{9} a^{9} + \frac{1}{3} a^{4} - \frac{2}{9} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{2}{9}$, $\frac{1}{9} a^{10} + \frac{1}{3} a^{5} - \frac{2}{9} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{2}{9} a$, $\frac{1}{27} a^{11} + \frac{1}{27} a^{10} - \frac{1}{27} a^{9} - \frac{8}{27} a^{5} - \frac{5}{27} a^{4} - \frac{13}{27} a^{3} + \frac{1}{27} a^{2} + \frac{7}{27} a - \frac{10}{27}$, $\frac{1}{162} a^{12} + \frac{2}{81} a^{10} + \frac{2}{81} a^{9} - \frac{1}{27} a^{8} - \frac{1}{27} a^{7} + \frac{11}{81} a^{6} - \frac{8}{27} a^{5} + \frac{23}{81} a^{4} - \frac{35}{81} a^{3} - \frac{10}{27} a^{2} - \frac{25}{81} a - \frac{71}{162}$, $\frac{1}{5022} a^{13} - \frac{2}{837} a^{12} - \frac{10}{2511} a^{11} + \frac{29}{2511} a^{10} + \frac{34}{837} a^{9} - \frac{16}{837} a^{8} - \frac{412}{2511} a^{7} - \frac{4}{27} a^{6} + \frac{326}{2511} a^{5} + \frac{244}{2511} a^{4} - \frac{94}{837} a^{3} - \frac{82}{2511} a^{2} + \frac{649}{5022} a + \frac{8}{27}$, $\frac{1}{426870} a^{14} - \frac{2}{23715} a^{13} - \frac{259}{426870} a^{12} + \frac{1664}{213435} a^{11} + \frac{7838}{213435} a^{10} - \frac{431}{42687} a^{9} + \frac{6506}{213435} a^{8} - \frac{421}{2635} a^{7} - \frac{4076}{213435} a^{6} + \frac{91837}{213435} a^{5} - \frac{2848}{6885} a^{4} - \frac{5095}{14229} a^{3} - \frac{143471}{426870} a^{2} - \frac{33766}{213435} a - \frac{2069}{13770}$, $\frac{1}{606016799331688530} a^{15} - \frac{91756714553}{121203359866337706} a^{14} - \frac{805263401569}{60601679933168853} a^{13} - \frac{79185337612253}{35648047019511090} a^{12} + \frac{608662068176678}{33667599962871585} a^{11} + \frac{1100721073664}{27679583416995} a^{10} + \frac{128043691835357}{3258154835116605} a^{9} + \frac{2442067901359235}{60601679933168853} a^{8} + \frac{8570628551240233}{303008399665844265} a^{7} + \frac{5618322227070512}{101002799888614755} a^{6} - \frac{135112577391039866}{303008399665844265} a^{5} - \frac{55495594108653923}{303008399665844265} a^{4} + \frac{211494019446453799}{606016799331688530} a^{3} - \frac{2203466260801133}{11882682339837030} a^{2} - \frac{12798451023124522}{33667599962871585} a + \frac{3517657495686131}{19548929010699630}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{4}\times C_{8}$, which has order $128$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{3861412501099}{11222533320957195} a^{15} + \frac{31541961598273}{22445066641914390} a^{14} - \frac{117299073047204}{11222533320957195} a^{13} + \frac{75225462528626}{3740844440319065} a^{12} - \frac{499278631710878}{3740844440319065} a^{11} + \frac{145431162928}{615101853711} a^{10} - \frac{11641008974853658}{11222533320957195} a^{9} + \frac{10860575738681723}{11222533320957195} a^{8} - \frac{39960507777897272}{11222533320957195} a^{7} + \frac{28797204720210764}{11222533320957195} a^{6} - \frac{5763258366420578}{660149018879835} a^{5} + \frac{2230736192907064}{748168888063813} a^{4} - \frac{23686462219941447}{3740844440319065} a^{3} + \frac{18380057540777517}{7481688880638130} a^{2} - \frac{37954254801358714}{11222533320957195} a + \frac{25598114616902}{24134480260123} \) (order $6$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 114559.255041 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{35}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{70}) \), \(\Q(\sqrt{-6}) \), \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{-3}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{10}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{-42}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-21}) \), \(\Q(\sqrt{2}, \sqrt{35})\), \(\Q(\sqrt{-6}, \sqrt{35})\), \(\Q(\sqrt{-3}, \sqrt{35})\), \(\Q(\sqrt{2}, \sqrt{-3})\), \(\Q(\sqrt{2}, \sqrt{-105})\), \(\Q(\sqrt{-6}, \sqrt{70})\), \(\Q(\sqrt{-3}, \sqrt{70})\), \(\Q(\sqrt{5}, \sqrt{7})\), \(\Q(\sqrt{10}, \sqrt{14})\), \(\Q(\sqrt{-30}, \sqrt{35})\), \(\Q(\sqrt{-15}, \sqrt{-21})\), \(\Q(\sqrt{2}, \sqrt{5})\), \(\Q(\sqrt{2}, \sqrt{7})\), \(\Q(\sqrt{2}, \sqrt{-15})\), \(\Q(\sqrt{2}, \sqrt{-21})\), \(\Q(\sqrt{5}, \sqrt{14})\), \(\Q(\sqrt{7}, \sqrt{10})\), \(\Q(\sqrt{-21}, \sqrt{-30})\), \(\Q(\sqrt{-15}, \sqrt{-42})\), \(\Q(\sqrt{5}, \sqrt{-6})\), \(\Q(\sqrt{-6}, \sqrt{7})\), \(\Q(\sqrt{-6}, \sqrt{10})\), \(\Q(\sqrt{-6}, \sqrt{14})\), \(\Q(\sqrt{5}, \sqrt{-42})\), \(\Q(\sqrt{7}, \sqrt{-30})\), \(\Q(\sqrt{10}, \sqrt{-21})\), \(\Q(\sqrt{14}, \sqrt{-15})\), \(\Q(\sqrt{-3}, \sqrt{5})\), \(\Q(\sqrt{-3}, \sqrt{7})\), \(\Q(\sqrt{-3}, \sqrt{10})\), \(\Q(\sqrt{-3}, \sqrt{14})\), \(\Q(\sqrt{5}, \sqrt{-21})\), \(\Q(\sqrt{7}, \sqrt{-15})\), \(\Q(\sqrt{10}, \sqrt{-42})\), \(\Q(\sqrt{14}, \sqrt{-30})\), 8.0.7965941760000.67, 8.8.98344960000.1, 8.0.7965941760000.32, 8.0.7965941760000.59, 8.0.7965941760000.37, 8.0.31116960000.9, 8.0.7965941760000.2, 8.0.207360000.1, 8.0.12745506816.4, 8.0.7965941760000.62, 8.0.7965941760000.38, 8.0.7965941760000.18, 8.0.7965941760000.29, 8.0.497871360000.20, 8.0.7965941760000.9

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.1.0.1}{1} }^{16}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
2.8.16.6$x^{8} + 4 x^{6} + 8 x^{2} + 4$$4$$2$$16$$C_2^3$$[2, 3]^{2}$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$