Properties

Label 16.0.63456228123...000.12
Degree $16$
Signature $[0, 8]$
Discriminant $2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}$
Root discriminant $40.99$
Ramified primes $2, 3, 5, 7$
Class number $128$ (GRH)
Class group $[2, 2, 4, 8]$ (GRH)
Galois group $C_2^4$ (as 16T3)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![67104, 169920, 51360, -60288, 76402, 48084, -37930, -16152, 13881, 840, -2630, 72, 360, -12, -28, 0, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 28*x^14 - 12*x^13 + 360*x^12 + 72*x^11 - 2630*x^10 + 840*x^9 + 13881*x^8 - 16152*x^7 - 37930*x^6 + 48084*x^5 + 76402*x^4 - 60288*x^3 + 51360*x^2 + 169920*x + 67104)
 
gp: K = bnfinit(x^16 - 28*x^14 - 12*x^13 + 360*x^12 + 72*x^11 - 2630*x^10 + 840*x^9 + 13881*x^8 - 16152*x^7 - 37930*x^6 + 48084*x^5 + 76402*x^4 - 60288*x^3 + 51360*x^2 + 169920*x + 67104, 1)
 

Normalized defining polynomial

\( x^{16} - 28 x^{14} - 12 x^{13} + 360 x^{12} + 72 x^{11} - 2630 x^{10} + 840 x^{9} + 13881 x^{8} - 16152 x^{7} - 37930 x^{6} + 48084 x^{5} + 76402 x^{4} - 60288 x^{3} + 51360 x^{2} + 169920 x + 67104 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(63456228123711897600000000=2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.99$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 3, 5, 7$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is Galois and abelian over $\Q$.
Conductor:  \(840=2^{3}\cdot 3\cdot 5\cdot 7\)
Dirichlet character group:    $\lbrace$$\chi_{840}(1,·)$, $\chi_{840}(391,·)$, $\chi_{840}(209,·)$, $\chi_{840}(211,·)$, $\chi_{840}(601,·)$, $\chi_{840}(29,·)$, $\chi_{840}(419,·)$, $\chi_{840}(421,·)$, $\chi_{840}(811,·)$, $\chi_{840}(239,·)$, $\chi_{840}(449,·)$, $\chi_{840}(659,·)$, $\chi_{840}(181,·)$, $\chi_{840}(631,·)$, $\chi_{840}(839,·)$, $\chi_{840}(629,·)$$\rbrace$
This is a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{6}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} + \frac{1}{4} a^{7} + \frac{1}{4} a^{5} - \frac{1}{2} a$, $\frac{1}{8} a^{12} - \frac{1}{8} a^{10} + \frac{1}{8} a^{8} - \frac{1}{2} a^{7} + \frac{1}{8} a^{6} - \frac{1}{2} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{8} a^{13} - \frac{1}{8} a^{11} + \frac{1}{8} a^{9} + \frac{1}{8} a^{7} + \frac{1}{4} a^{3}$, $\frac{1}{282001896} a^{14} + \frac{4404745}{94000632} a^{13} + \frac{233437}{35250237} a^{12} - \frac{6640289}{94000632} a^{11} - \frac{4065665}{23500158} a^{10} - \frac{4681773}{31333544} a^{9} - \frac{11480347}{141000948} a^{8} - \frac{45532459}{94000632} a^{7} + \frac{15020741}{31333544} a^{6} + \frac{2983643}{11750079} a^{5} + \frac{3972671}{12818268} a^{4} - \frac{18679789}{47000316} a^{3} - \frac{48495283}{141000948} a^{2} + \frac{4400323}{11750079} a - \frac{3299449}{11750079}$, $\frac{1}{30494865062221263889419283632} a^{15} - \frac{2780670274000860529}{5082477510370210648236547272} a^{14} - \frac{95604866167702688479201039}{1905929066388828993088705227} a^{13} + \frac{44661034944459494908740203}{5082477510370210648236547272} a^{12} + \frac{56773909600587226464489718}{635309688796276331029568409} a^{11} - \frac{219053328508055842872476183}{1694159170123403549412182424} a^{10} + \frac{3345972568840061387616168809}{15247432531110631944709641816} a^{9} - \frac{1136740203675529006001652605}{5082477510370210648236547272} a^{8} - \frac{1127120218530414154313299807}{3388318340246807098824364848} a^{7} + \frac{582289542865833799933067561}{1270619377592552662059136818} a^{6} - \frac{332286835353720189976085267}{15247432531110631944709641816} a^{5} + \frac{125903423245256377808296336}{635309688796276331029568409} a^{4} - \frac{5328977420753720825737924699}{15247432531110631944709641816} a^{3} + \frac{199186250660149947390385412}{635309688796276331029568409} a^{2} - \frac{570092259175386075916337359}{1270619377592552662059136818} a + \frac{26497722700540043095155755}{70589965421808481225507601}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{4}\times C_{8}$, which has order $128$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -\frac{10543616044304042891987}{222590255928622364156345136} a^{15} + \frac{796489639419496098151}{37098375988103727359390856} a^{14} + \frac{18340608486856590348275}{13911890995538897759771571} a^{13} - \frac{400254038422019602207}{12366125329367909119796952} a^{12} - \frac{316904906518230710989607}{18549187994051863679695428} a^{11} + \frac{17887771018934314494915}{4122041776455969706598984} a^{10} + \frac{13689953011507807775446847}{111295127964311182078172568} a^{9} - \frac{107552556844166531833381}{1124193211760719010890632} a^{8} - \frac{15189278504665891013523191}{24732250658735818239593904} a^{7} + \frac{9701757723785650388867069}{9274593997025931839847714} a^{6} + \frac{145217304932825948940415879}{111295127964311182078172568} a^{5} - \frac{4460334812163675773436919}{1545765666170988639974619} a^{4} - \frac{235310957778679503992848735}{111295127964311182078172568} a^{3} + \frac{5706246730801751703791228}{1545765666170988639974619} a^{2} - \frac{20851969389496897443568388}{4637296998512965919923857} a - \frac{8007798635866528918351586}{1545765666170988639974619} \) (order $8$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 968872.10852 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^4$ (as 16T3):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
An abelian group of order 16
The 16 conjugacy class representatives for $C_2^4$
Character table for $C_2^4$

Intermediate fields

\(\Q(\sqrt{-1}) \), \(\Q(\sqrt{-2}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{210}) \), \(\Q(\sqrt{-210}) \), \(\Q(\sqrt{-105}) \), \(\Q(\sqrt{105}) \), \(\Q(\sqrt{14}) \), \(\Q(\sqrt{-14}) \), \(\Q(\sqrt{-7}) \), \(\Q(\sqrt{7}) \), \(\Q(\sqrt{15}) \), \(\Q(\sqrt{-15}) \), \(\Q(\sqrt{-30}) \), \(\Q(\sqrt{30}) \), \(\Q(\zeta_{8})\), \(\Q(i, \sqrt{210})\), \(\Q(i, \sqrt{105})\), \(\Q(\sqrt{-2}, \sqrt{-105})\), \(\Q(\sqrt{-2}, \sqrt{105})\), \(\Q(\sqrt{2}, \sqrt{105})\), \(\Q(\sqrt{2}, \sqrt{-105})\), \(\Q(i, \sqrt{14})\), \(\Q(i, \sqrt{7})\), \(\Q(i, \sqrt{15})\), \(\Q(i, \sqrt{30})\), \(\Q(\sqrt{-2}, \sqrt{-7})\), \(\Q(\sqrt{-2}, \sqrt{7})\), \(\Q(\sqrt{-2}, \sqrt{15})\), \(\Q(\sqrt{-2}, \sqrt{-15})\), \(\Q(\sqrt{2}, \sqrt{7})\), \(\Q(\sqrt{2}, \sqrt{-7})\), \(\Q(\sqrt{2}, \sqrt{15})\), \(\Q(\sqrt{2}, \sqrt{-15})\), \(\Q(\sqrt{14}, \sqrt{15})\), \(\Q(\sqrt{-14}, \sqrt{-15})\), \(\Q(\sqrt{-7}, \sqrt{-30})\), \(\Q(\sqrt{7}, \sqrt{30})\), \(\Q(\sqrt{14}, \sqrt{-15})\), \(\Q(\sqrt{-14}, \sqrt{15})\), \(\Q(\sqrt{-7}, \sqrt{30})\), \(\Q(\sqrt{7}, \sqrt{-30})\), \(\Q(\sqrt{14}, \sqrt{-30})\), \(\Q(\sqrt{-14}, \sqrt{30})\), \(\Q(\sqrt{-7}, \sqrt{15})\), \(\Q(\sqrt{7}, \sqrt{-15})\), \(\Q(\sqrt{14}, \sqrt{30})\), \(\Q(\sqrt{-14}, \sqrt{-30})\), \(\Q(\sqrt{-7}, \sqrt{-15})\), \(\Q(\sqrt{7}, \sqrt{15})\), 8.0.7965941760000.69, 8.0.157351936.1, 8.0.3317760000.4, 8.0.7965941760000.41, 8.0.7965941760000.65, 8.0.7965941760000.3, 8.0.31116960000.7, 8.0.7965941760000.26, 8.0.7965941760000.10, 8.0.497871360000.3, 8.0.7965941760000.24, 8.8.7965941760000.4, 8.0.497871360000.10, 8.0.7965941760000.38, 8.0.7965941760000.47

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R R R R ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$2$2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
2.4.8.2$x^{4} + 6 x^{2} + 1$$4$$1$$8$$C_2^2$$[2, 3]$
$3$3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
3.4.2.1$x^{4} + 9 x^{2} + 36$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$7$7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
7.4.2.1$x^{4} + 35 x^{2} + 441$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$