Normalized defining polynomial
\( x^{16} + 10 x^{14} + 53 x^{12} + 810 x^{10} + 3788 x^{8} - 10410 x^{6} + 23213 x^{4} - 20570 x^{2} + 14641 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(63456228123711897600000000=2^{32}\cdot 3^{8}\cdot 5^{8}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $40.99$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(840=2^{3}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{840}(799,·)$, $\chi_{840}(1,·)$, $\chi_{840}(391,·)$, $\chi_{840}(209,·)$, $\chi_{840}(659,·)$, $\chi_{840}(281,·)$, $\chi_{840}(349,·)$, $\chi_{840}(671,·)$, $\chi_{840}(251,·)$, $\chi_{840}(421,·)$, $\chi_{840}(811,·)$, $\chi_{840}(239,·)$, $\chi_{840}(629,·)$, $\chi_{840}(379,·)$, $\chi_{840}(769,·)$, $\chi_{840}(701,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3}$, $\frac{1}{52} a^{10} - \frac{1}{4} a^{9} - \frac{1}{26} a^{8} - \frac{1}{4} a^{7} - \frac{9}{52} a^{6} - \frac{1}{2} a^{5} + \frac{5}{52} a^{4} + \frac{1}{4} a^{3} + \frac{4}{13} a^{2} - \frac{1}{4} a - \frac{19}{52}$, $\frac{1}{52} a^{11} + \frac{11}{52} a^{9} - \frac{1}{4} a^{8} + \frac{1}{13} a^{7} - \frac{1}{4} a^{6} - \frac{21}{52} a^{5} - \frac{1}{2} a^{4} + \frac{3}{52} a^{3} + \frac{1}{4} a^{2} - \frac{3}{26} a - \frac{1}{4}$, $\frac{1}{1092} a^{12} - \frac{1}{156} a^{10} - \frac{1}{4} a^{9} - \frac{2}{13} a^{8} - \frac{1}{4} a^{7} + \frac{271}{1092} a^{6} - \frac{1}{2} a^{5} - \frac{19}{52} a^{4} + \frac{1}{4} a^{3} + \frac{31}{78} a^{2} - \frac{1}{4} a + \frac{79}{273}$, $\frac{1}{24024} a^{13} - \frac{1}{2184} a^{12} + \frac{7}{1716} a^{11} - \frac{1}{156} a^{10} - \frac{87}{572} a^{9} + \frac{5}{52} a^{8} + \frac{241}{6006} a^{7} + \frac{58}{273} a^{6} - \frac{101}{572} a^{5} + \frac{7}{52} a^{4} - \frac{5}{1716} a^{3} + \frac{23}{156} a^{2} + \frac{11971}{24024} a - \frac{463}{2184}$, $\frac{1}{213577372008} a^{14} - \frac{6862673}{71192457336} a^{12} - \frac{3903413}{15255526572} a^{10} - \frac{1}{4} a^{9} - \frac{12945767815}{106788686004} a^{8} - \frac{1}{4} a^{7} - \frac{11558396519}{53394343002} a^{6} - \frac{1}{2} a^{5} - \frac{7011968375}{15255526572} a^{4} + \frac{1}{4} a^{3} + \frac{5586226573}{23730819112} a^{2} - \frac{1}{4} a + \frac{168142567}{1765102248}$, $\frac{1}{4698702184176} a^{15} - \frac{1}{427154744016} a^{14} - \frac{6862673}{1566234061392} a^{13} + \frac{6862673}{142384914672} a^{12} + \frac{1318238093}{167810792292} a^{11} - \frac{144736049}{15255526572} a^{10} + \frac{3483260801}{2349351092088} a^{9} + \frac{17053024969}{213577372008} a^{8} - \frac{29277678769}{2349351092088} a^{7} + \frac{41599450231}{213577372008} a^{6} - \frac{16388726191}{41952698073} a^{5} + \frac{1386272705}{7627763286} a^{4} + \frac{83167750593}{522078020464} a^{3} + \frac{10842802043}{47461638224} a^{2} - \frac{8283981659}{38832249456} a - \frac{1288303609}{3530204496}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{4}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{1895125}{35596228668} a^{14} - \frac{1652254}{2966352389} a^{12} - \frac{3974120}{1271293881} a^{10} - \frac{807700529}{17798114334} a^{8} - \frac{2019642340}{8899057167} a^{6} + \frac{509928592}{1271293881} a^{4} - \frac{16233449475}{11865409556} a^{2} + \frac{89025941}{73545927} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 968872.10852 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_2^4$ |
| Character table for $C_2^4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ |
| 2.8.16.6 | $x^{8} + 4 x^{6} + 8 x^{2} + 4$ | $4$ | $2$ | $16$ | $C_2^3$ | $[2, 3]^{2}$ | |
| $3$ | 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $5$ | 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 5.4.2.1 | $x^{4} + 15 x^{2} + 100$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $7$ | 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |