Normalized defining polynomial
\( x^{16} + 560 x^{14} + 109988 x^{12} + 9846560 x^{10} + 431415164 x^{8} + 9477533120 x^{6} + 104285207312 x^{4} + 533244250880 x^{2} + 1006498523536 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(63291260341991767325802496000000000000=2^{48}\cdot 5^{12}\cdot 11^{6}\cdot 151^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $230.45$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 151$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{56} a^{8} + \frac{1}{28} a^{4} - \frac{2}{7} a^{2} + \frac{1}{14}$, $\frac{1}{112} a^{9} - \frac{1}{4} a^{7} - \frac{13}{56} a^{5} - \frac{1}{7} a^{3} + \frac{1}{28} a$, $\frac{1}{16912} a^{10} - \frac{11}{4228} a^{8} - \frac{1329}{8456} a^{6} - \frac{66}{1057} a^{4} + \frac{1437}{4228} a^{2} - \frac{1}{7}$, $\frac{1}{16912} a^{11} - \frac{11}{4228} a^{9} - \frac{1329}{8456} a^{7} - \frac{66}{1057} a^{5} + \frac{1437}{4228} a^{3} - \frac{1}{7} a$, $\frac{1}{28090832} a^{12} + \frac{5}{250811} a^{10} + \frac{27497}{7022708} a^{8} - \frac{23235}{3511354} a^{6} - \frac{624497}{3511354} a^{4} - \frac{344}{1057} a^{2} + \frac{1}{14}$, $\frac{1}{56181664} a^{13} + \frac{5}{501622} a^{11} + \frac{27497}{14045416} a^{9} + \frac{866221}{3511354} a^{7} - \frac{624497}{7022708} a^{5} + \frac{713}{2114} a^{3} + \frac{1}{28} a$, $\frac{1}{2331012845295188201698815264} a^{14} - \frac{2484183626132929921}{166500917521084871549915376} a^{12} + \frac{2827569822754021989353}{291376605661898525212351908} a^{10} + \frac{5011370739759557738782237}{582753211323797050424703816} a^{8} - \frac{911782783780515181417229}{145688302830949262606175954} a^{6} - \frac{100402887761441994106621}{1929646395111910762995708} a^{4} + \frac{315296562124123273975}{1161737745401511597228} a^{2} + \frac{676802597086232893}{1923406863247535757}$, $\frac{1}{2331012845295188201698815264} a^{15} + \frac{6712062998478681007}{2331012845295188201698815264} a^{13} + \frac{5731914186257800982423}{291376605661898525212351908} a^{11} + \frac{1898170047687408462050357}{1165506422647594100849407632} a^{9} - \frac{398228634725066184290599}{41625229380271217887478844} a^{7} + \frac{31992035372708173856687}{350844799111256502362856} a^{5} - \frac{288653192935602953723}{1161737745401511597228} a^{3} + \frac{676802597086232893}{1923406863247535757} a$
Class group and class number
$C_{2}\times C_{4}\times C_{4}\times C_{569700}$, which has order $18230400$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 126260.424946 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T456):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{2}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{10}) \), 4.4.22000.1, \(\Q(\sqrt{2}, \sqrt{5})\), 4.4.88000.1, 8.8.123904000000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $11$ | 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.8.6.2 | $x^{8} - 781 x^{4} + 290521$ | $4$ | $2$ | $6$ | $D_4$ | $[\ ]_{4}^{2}$ | |
| $151$ | 151.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 151.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 151.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 151.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 151.4.2.1 | $x^{4} + 3473 x^{2} + 3283344$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 151.4.2.1 | $x^{4} + 3473 x^{2} + 3283344$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |