Normalized defining polynomial
\( x^{16} - 8 x^{15} + 46 x^{14} - 96 x^{13} + 204 x^{12} + 156 x^{11} + 858 x^{10} - 378 x^{9} + 3484 x^{8} - 16316 x^{7} + 66552 x^{6} - 37640 x^{5} + 4243 x^{4} + 41710 x^{3} + 22326 x^{2} + 66586 x + 35321 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6322175692565046886400000000=2^{24}\cdot 5^{8}\cdot 29^{4}\cdot 1109^{3}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 29, 1109$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{16701999851560735610564153710480195443685439} a^{15} + \frac{591759382569075216655121477793324608908403}{16701999851560735610564153710480195443685439} a^{14} - \frac{6858169967979833974619305606028404444327779}{16701999851560735610564153710480195443685439} a^{13} - \frac{3953751049760430470757392796468508405434995}{16701999851560735610564153710480195443685439} a^{12} + \frac{7470407709036286948170249939907169542937021}{16701999851560735610564153710480195443685439} a^{11} + \frac{369945176621860547155787322808165272713929}{1284769219350825816197242593113861187975803} a^{10} - \frac{363573326168699713118063639566272687053652}{1284769219350825816197242593113861187975803} a^{9} - \frac{2488699473177542142616174301195151747594146}{16701999851560735610564153710480195443685439} a^{8} + \frac{204968844634706151272637160639062448125778}{1284769219350825816197242593113861187975803} a^{7} + \frac{2895250741577889704541105662933630158183134}{16701999851560735610564153710480195443685439} a^{6} - \frac{4879006020109625626031455588959438340880203}{16701999851560735610564153710480195443685439} a^{5} + \frac{8129349524377065830121060758798155746904666}{16701999851560735610564153710480195443685439} a^{4} - \frac{1148480867369382011445996093384274111447819}{16701999851560735610564153710480195443685439} a^{3} - \frac{3941212467866490008232549422803302675151741}{16701999851560735610564153710480195443685439} a^{2} + \frac{3361239122715977326205128442601719967900492}{16701999851560735610564153710480195443685439} a - \frac{462340134484011913552177211361020044744978}{1284769219350825816197242593113861187975803}$
Class group and class number
$C_{186}$, which has order $186$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 92956.9051198 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 8192 |
| The 95 conjugacy class representatives for t16n1741 are not computed |
| Character table for t16n1741 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.725.1, 8.8.149227040000.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | R | ${\href{/LocalNumberField/7.8.0.1}{8} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }{,}\,{\href{/LocalNumberField/11.4.0.1}{4} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{2}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{3}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $29$ | 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 29.4.0.1 | $x^{4} - x + 19$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 29.8.4.1 | $x^{8} + 31958 x^{4} - 24389 x^{2} + 255328441$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| 1109 | Data not computed | ||||||