Normalized defining polynomial
\( x^{16} - 2 x^{15} + 5 x^{14} + 18 x^{13} + 102 x^{12} + 280 x^{11} + 478 x^{10} + 1148 x^{9} + 2713 x^{8} + 3734 x^{7} + 3576 x^{6} + 3336 x^{5} + 2992 x^{4} + 1694 x^{3} + 577 x^{2} - 200 x + 25 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6314189689144773879093121=23^{4}\cdot 41^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.48$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $23, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{164} a^{12} + \frac{17}{82} a^{11} - \frac{9}{41} a^{10} + \frac{19}{82} a^{9} + \frac{29}{164} a^{8} + \frac{13}{82} a^{7} - \frac{31}{164} a^{6} - \frac{37}{82} a^{5} - \frac{77}{164} a^{4} - \frac{8}{41} a^{3} - \frac{29}{82} a^{2} - \frac{17}{82} a - \frac{57}{164}$, $\frac{1}{164} a^{13} + \frac{19}{82} a^{11} + \frac{8}{41} a^{10} - \frac{33}{164} a^{9} + \frac{6}{41} a^{8} - \frac{13}{164} a^{7} - \frac{1}{41} a^{6} - \frac{21}{164} a^{5} + \frac{11}{41} a^{4} + \frac{23}{82} a^{3} + \frac{13}{41} a^{2} + \frac{33}{164} a + \frac{13}{41}$, $\frac{1}{4920} a^{14} + \frac{1}{4920} a^{13} + \frac{13}{4920} a^{12} + \frac{61}{2460} a^{11} + \frac{653}{4920} a^{10} - \frac{631}{4920} a^{9} - \frac{55}{492} a^{8} - \frac{359}{1640} a^{7} - \frac{101}{615} a^{6} + \frac{145}{984} a^{5} - \frac{2249}{4920} a^{4} - \frac{43}{2460} a^{3} + \frac{703}{1640} a^{2} + \frac{1591}{4920} a + \frac{443}{984}$, $\frac{1}{233840826160969080} a^{15} + \frac{3326554111931}{116920413080484540} a^{14} + \frac{201570329436857}{116920413080484540} a^{13} + \frac{139639171175407}{46768165232193816} a^{12} - \frac{344885607713009}{46768165232193816} a^{11} - \frac{22479352730459939}{116920413080484540} a^{10} - \frac{21267999573333901}{233840826160969080} a^{9} - \frac{17419333025408629}{77946942053656360} a^{8} + \frac{9521590304943715}{46768165232193816} a^{7} - \frac{57854037170725123}{233840826160969080} a^{6} + \frac{14265429226471427}{29230103270121135} a^{5} + \frac{17307946937324093}{46768165232193816} a^{4} + \frac{17823954907456361}{77946942053656360} a^{3} - \frac{1980056943724814}{5846020654024227} a^{2} - \frac{28218578083787977}{116920413080484540} a - \frac{5246077190899603}{15589388410731272}$
Class group and class number
$C_{3}$, which has order $3$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 176127.861771 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\wr C_4$ (as 16T158):
| A solvable group of order 64 |
| The 13 conjugacy class representatives for $C_2\wr C_4$ |
| Character table for $C_2\wr C_4$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.2.38663.1, 4.4.68921.1, 4.2.1585183.1, 8.0.61287930329.1 x2, 8.2.109252397543.1 x2, 8.4.2512805143489.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 8 siblings: | data not computed |
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $23$ | 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 23.4.2.1 | $x^{4} + 299 x^{2} + 25921$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $41$ | 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 41.4.3.1 | $x^{4} - 41$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |