Normalized defining polynomial
\( x^{16} + 150 x^{14} + 9022 x^{12} + 280004 x^{10} + 4809504 x^{8} + 45653880 x^{6} + 226136664 x^{4} + 493550656 x^{2} + 246775328 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(63032584989723012513503859703808=2^{37}\cdot 2777^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.16$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 2777$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{22216} a^{12} + \frac{75}{11108} a^{10} - \frac{1043}{11108} a^{8} + \frac{288}{2777} a^{6} - \frac{65}{5554} a^{4}$, $\frac{1}{22216} a^{13} + \frac{75}{11108} a^{11} - \frac{1043}{11108} a^{9} + \frac{288}{2777} a^{7} - \frac{65}{5554} a^{5}$, $\frac{1}{1344307180173589661776} a^{14} + \frac{13069320626282769}{672153590086794830888} a^{12} - \frac{57774010634598198697}{672153590086794830888} a^{10} + \frac{37705226696852037529}{336076795043397415444} a^{8} + \frac{3644080893691306059}{84019198760849353861} a^{6} - \frac{15135500020905159278}{84019198760849353861} a^{4} - \frac{14565869462470139}{60510766122325786} a^{2} - \frac{12456814589283730}{30255383061162893}$, $\frac{1}{2688614360347179323552} a^{15} - \frac{4296515608720031}{336076795043397415444} a^{13} + \frac{105726079427926075075}{1344307180173589661776} a^{11} + \frac{8657698903705616866}{84019198760849353861} a^{9} - \frac{5069469427923607125}{168038397521698707722} a^{7} - \frac{28304400142834730511}{336076795043397415444} a^{5} - \frac{14565869462470139}{121021532244651572} a^{3} + \frac{17798568471879163}{60510766122325786} a$
Class group and class number
$C_{2}\times C_{4}\times C_{13224}$, which has order $105792$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 23245.1031727 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 3072 |
| The 36 conjugacy class representatives for t16n1540 |
| Character table for t16n1540 is not computed |
Intermediate fields
| 4.4.2777.1, 8.8.3948405248.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | $16$ | $16$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }{,}\,{\href{/LocalNumberField/29.4.0.1}{4} }^{2}$ | ${\href{/LocalNumberField/31.12.0.1}{12} }{,}\,{\href{/LocalNumberField/31.4.0.1}{4} }$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }{,}\,{\href{/LocalNumberField/41.4.0.1}{4} }{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/43.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }{,}\,{\href{/LocalNumberField/59.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.10.6 | $x^{4} + 6 x^{2} + 3$ | $4$ | $1$ | $10$ | $D_{4}$ | $[2, 3, 7/2]$ |
| 2.12.27.29 | $x^{12} + 16 x^{10} + 28 x^{8} - 16 x^{6} + 12 x^{4} + 24 x^{2} + 24$ | $4$ | $3$ | $27$ | 12T141 | $[2, 2, 2, 3, 7/2, 7/2, 7/2]^{3}$ | |
| 2777 | Data not computed | ||||||