Normalized defining polynomial
\( x^{16} + 19 x^{14} - 20 x^{13} + 142 x^{12} - 260 x^{11} + 617 x^{10} - 1100 x^{9} + 1585 x^{8} - 1750 x^{7} + 1398 x^{6} - 600 x^{5} + 202 x^{4} - 680 x^{3} + 1256 x^{2} - 750 x + 181 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6301184400000000000000=2^{16}\cdot 3^{8}\cdot 5^{14}\cdot 7^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $23.04$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{31919} a^{14} - \frac{7899}{31919} a^{13} - \frac{4182}{31919} a^{12} + \frac{11933}{31919} a^{11} + \frac{1531}{31919} a^{10} - \frac{15356}{31919} a^{9} - \frac{8870}{31919} a^{8} - \frac{5043}{31919} a^{7} - \frac{5061}{31919} a^{6} + \frac{580}{31919} a^{5} + \frac{9857}{31919} a^{4} - \frac{12883}{31919} a^{3} - \frac{11340}{31919} a^{2} + \frac{11668}{31919} a + \frac{12864}{31919}$, $\frac{1}{18162589421832056459} a^{15} - \frac{125014970661116}{18162589421832056459} a^{14} + \frac{7227984736749750344}{18162589421832056459} a^{13} + \frac{299053329480218111}{18162589421832056459} a^{12} + \frac{7057164537199127959}{18162589421832056459} a^{11} + \frac{466930280486391593}{18162589421832056459} a^{10} + \frac{7900558065109163035}{18162589421832056459} a^{9} - \frac{1954547688056742678}{18162589421832056459} a^{8} + \frac{7667699204142331282}{18162589421832056459} a^{7} - \frac{5968673971830162923}{18162589421832056459} a^{6} - \frac{7591253361728910189}{18162589421832056459} a^{5} + \frac{2453936369523889907}{18162589421832056459} a^{4} - \frac{7110953778136220788}{18162589421832056459} a^{3} - \frac{1045714320977896957}{18162589421832056459} a^{2} + \frac{7921465754633851307}{18162589421832056459} a + \frac{2925418125678920380}{18162589421832056459}$
Class group and class number
$C_{2}\times C_{2}$, which has order $4$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3121.7160225 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$OD_{16}:C_2$ (as 16T16):
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $(C_8:C_2):C_2$ |
| Character table for $(C_8:C_2):C_2$ |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{3}) \), \(\Q(\sqrt{15}) \), \(\Q(\zeta_{15})^+\), \(\Q(\zeta_{20})^+\), \(\Q(\sqrt{3}, \sqrt{5})\), \(\Q(\zeta_{60})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.1.0.1}{1} }^{16}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $7$ | 7.8.4.2 | $x^{8} + 49 x^{4} - 1029 x^{2} + 12005$ | $2$ | $4$ | $4$ | $C_8$ | $[\ ]_{2}^{4}$ |
| 7.8.0.1 | $x^{8} - x + 3$ | $1$ | $8$ | $0$ | $C_8$ | $[\ ]^{8}$ | |