Properties

Label 16.0.62882616180...0000.4
Degree $16$
Signature $[0, 8]$
Discriminant $2^{40}\cdot 5^{8}\cdot 11^{4}$
Root discriminant $23.04$
Ramified primes $2, 5, 11$
Class number $1$ (GRH)
Class group Trivial (GRH)
Galois group $C_2^3.C_2^4.C_2$ (as 16T657)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![89, -48, 1208, -956, 4554, -4308, 3884, -2536, 1455, -244, 52, -64, 70, -44, 12, -4, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 4*x^15 + 12*x^14 - 44*x^13 + 70*x^12 - 64*x^11 + 52*x^10 - 244*x^9 + 1455*x^8 - 2536*x^7 + 3884*x^6 - 4308*x^5 + 4554*x^4 - 956*x^3 + 1208*x^2 - 48*x + 89)
 
gp: K = bnfinit(x^16 - 4*x^15 + 12*x^14 - 44*x^13 + 70*x^12 - 64*x^11 + 52*x^10 - 244*x^9 + 1455*x^8 - 2536*x^7 + 3884*x^6 - 4308*x^5 + 4554*x^4 - 956*x^3 + 1208*x^2 - 48*x + 89, 1)
 

Normalized defining polynomial

\( x^{16} - 4 x^{15} + 12 x^{14} - 44 x^{13} + 70 x^{12} - 64 x^{11} + 52 x^{10} - 244 x^{9} + 1455 x^{8} - 2536 x^{7} + 3884 x^{6} - 4308 x^{5} + 4554 x^{4} - 956 x^{3} + 1208 x^{2} - 48 x + 89 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(6288261618073600000000=2^{40}\cdot 5^{8}\cdot 11^{4}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $23.04$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $2, 5, 11$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{20} a^{10} - \frac{1}{20} a^{9} - \frac{1}{20} a^{8} - \frac{1}{5} a^{7} + \frac{3}{20} a^{6} - \frac{7}{20} a^{5} + \frac{1}{20} a^{4} + \frac{2}{5} a^{3} + \frac{7}{20} a^{2} - \frac{7}{20} a + \frac{9}{20}$, $\frac{1}{20} a^{11} - \frac{1}{10} a^{9} - \frac{1}{4} a^{8} - \frac{1}{20} a^{7} - \frac{1}{5} a^{6} - \frac{3}{10} a^{5} + \frac{9}{20} a^{4} - \frac{1}{4} a^{3} + \frac{1}{10} a + \frac{9}{20}$, $\frac{1}{20} a^{12} + \frac{3}{20} a^{9} - \frac{3}{20} a^{8} + \frac{2}{5} a^{7} + \frac{1}{4} a^{5} - \frac{3}{20} a^{4} - \frac{1}{5} a^{3} - \frac{1}{5} a^{2} + \frac{1}{4} a - \frac{1}{10}$, $\frac{1}{20} a^{13} + \frac{1}{20} a^{8} - \frac{2}{5} a^{7} - \frac{1}{5} a^{6} - \frac{1}{10} a^{5} + \frac{3}{20} a^{4} - \frac{2}{5} a^{3} + \frac{1}{5} a^{2} - \frac{1}{20} a + \frac{3}{20}$, $\frac{1}{1700} a^{14} - \frac{7}{1700} a^{13} + \frac{1}{68} a^{12} + \frac{11}{850} a^{11} - \frac{13}{850} a^{10} + \frac{2}{425} a^{9} + \frac{33}{850} a^{8} - \frac{83}{850} a^{7} + \frac{16}{85} a^{6} + \frac{361}{850} a^{5} - \frac{168}{425} a^{4} - \frac{209}{850} a^{3} + \frac{389}{1700} a^{2} - \frac{649}{1700} a + \frac{213}{1700}$, $\frac{1}{31531977335568893300} a^{15} + \frac{73107576517561}{31531977335568893300} a^{14} - \frac{350067520190573181}{31531977335568893300} a^{13} + \frac{265080895280522687}{31531977335568893300} a^{12} - \frac{27611190305892384}{1576598866778444665} a^{11} - \frac{117826491383577941}{6306395467113778660} a^{10} + \frac{33904886565177455}{315319773355688933} a^{9} - \frac{2205134463868161479}{15765988667784446650} a^{8} + \frac{1385883157445803561}{15765988667784446650} a^{7} + \frac{5684707447851617967}{31531977335568893300} a^{6} + \frac{5338285411632483437}{15765988667784446650} a^{5} + \frac{870849184463293439}{7882994333892223325} a^{4} + \frac{1109393183332234187}{6306395467113778660} a^{3} - \frac{46178063348327548}{7882994333892223325} a^{2} + \frac{7298756299393506901}{31531977335568893300} a - \frac{532065675571651373}{1854822196209934900}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

Trivial group, which has order $1$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 27241.8258755 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.C_2^4.C_2$ (as 16T657):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 256
The 34 conjugacy class representatives for $C_2^3.C_2^4.C_2$
Character table for $C_2^3.C_2^4.C_2$ is not computed

Intermediate fields

\(\Q(\sqrt{-10}) \), \(\Q(\sqrt{5}) \), \(\Q(\sqrt{-2}) \), 4.2.1600.1, 4.2.400.1, \(\Q(\sqrt{-2}, \sqrt{5})\), 8.0.40960000.3

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 siblings: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type R ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/19.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/53.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/59.1.0.1}{1} }^{4}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
2Data not computed
$5$5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
5.4.2.1$x^{4} + 15 x^{2} + 100$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$11$$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
$\Q_{11}$$x + 3$$1$$1$$0$Trivial$[\ ]$
11.2.1.1$x^{2} - 11$$2$$1$$1$$C_2$$[\ ]_{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.0.1$x^{2} - x + 7$$1$$2$$0$$C_2$$[\ ]^{2}$
11.2.1.2$x^{2} + 33$$2$$1$$1$$C_2$$[\ ]_{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$