Normalized defining polynomial
\( x^{16} - x^{15} + 4 x^{14} - 20 x^{13} + 110 x^{12} - 525 x^{11} + 325 x^{10} + 425 x^{9} + 12062 x^{8} + 21729 x^{7} + 64244 x^{6} + 119403 x^{5} + 154492 x^{4} + 132177 x^{3} + 210865 x^{2} + 281708 x + 132937 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6254270377697284219642783674257=113^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $84.09$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $113$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(113\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{113}(1,·)$, $\chi_{113}(69,·)$, $\chi_{113}(65,·)$, $\chi_{113}(73,·)$, $\chi_{113}(78,·)$, $\chi_{113}(15,·)$, $\chi_{113}(18,·)$, $\chi_{113}(95,·)$, $\chi_{113}(48,·)$, $\chi_{113}(98,·)$, $\chi_{113}(35,·)$, $\chi_{113}(40,·)$, $\chi_{113}(42,·)$, $\chi_{113}(71,·)$, $\chi_{113}(44,·)$, $\chi_{113}(112,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2}$, $\frac{1}{2} a^{12} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{13} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{436} a^{14} - \frac{63}{436} a^{13} - \frac{19}{436} a^{12} - \frac{53}{436} a^{11} + \frac{3}{436} a^{10} - \frac{5}{218} a^{9} - \frac{40}{109} a^{8} + \frac{149}{436} a^{7} - \frac{41}{218} a^{6} + \frac{63}{218} a^{5} - \frac{14}{109} a^{4} - \frac{53}{436} a^{3} - \frac{105}{218} a^{2} - \frac{81}{218} a - \frac{183}{436}$, $\frac{1}{235507558683255484545564323362469978248} a^{15} - \frac{14071060635376120603235087617011681}{117753779341627742272782161681234989124} a^{14} - \frac{19774378854751556123867676883819401601}{117753779341627742272782161681234989124} a^{13} + \frac{27153008353246984574348125706466443299}{117753779341627742272782161681234989124} a^{12} - \frac{4868728891323672600567396655160185222}{29438444835406935568195540420308747281} a^{11} + \frac{321763238493879405644288355311827049}{33643936954750783506509189051781425464} a^{10} + \frac{11061418121826024317407548199722734389}{117753779341627742272782161681234989124} a^{9} + \frac{26174028567598520913037363987701895451}{235507558683255484545564323362469978248} a^{8} - \frac{116864357488514869615819626621640838237}{235507558683255484545564323362469978248} a^{7} - \frac{12801241542181110715663802090025119751}{117753779341627742272782161681234989124} a^{6} + \frac{5141650721093857519093677813738597581}{117753779341627742272782161681234989124} a^{5} + \frac{640687060262212289925980090238433857}{2160619804433536555463892874885045672} a^{4} + \frac{44327295169702113080387214847158590263}{235507558683255484545564323362469978248} a^{3} - \frac{50427048860278160603440402310424265113}{117753779341627742272782161681234989124} a^{2} - \frac{40992757657569973097801566908220670865}{235507558683255484545564323362469978248} a - \frac{9062047032168468153879991654000985497}{33643936954750783506509189051781425464}$
Class group and class number
$C_{17}$, which has order $17$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 22137831.685215954 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A cyclic group of order 16 |
| The 16 conjugacy class representatives for $C_{16}$ |
| Character table for $C_{16}$ |
Intermediate fields
| \(\Q(\sqrt{113}) \), 4.4.1442897.1, 8.8.235260548044817.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | $16$ | ${\href{/LocalNumberField/7.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | $16$ | $16$ | $16$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | $16$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 113 | Data not computed | ||||||