Properties

Label 16.0.62530736208...8001.1
Degree $16$
Signature $[0, 8]$
Discriminant $23^{8}\cdot 41^{8}$
Root discriminant $30.71$
Ramified primes $23, 41$
Class number $3$ (GRH)
Class group $[3]$ (GRH)
Galois group $C_2^2.SD_{16}$ (as 16T163)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3107, -4921, 653, 1587, 2301, 410, -449, 71, 6, -8, -41, -50, 17, 14, -6, -1, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - x^15 - 6*x^14 + 14*x^13 + 17*x^12 - 50*x^11 - 41*x^10 - 8*x^9 + 6*x^8 + 71*x^7 - 449*x^6 + 410*x^5 + 2301*x^4 + 1587*x^3 + 653*x^2 - 4921*x + 3107)
 
gp: K = bnfinit(x^16 - x^15 - 6*x^14 + 14*x^13 + 17*x^12 - 50*x^11 - 41*x^10 - 8*x^9 + 6*x^8 + 71*x^7 - 449*x^6 + 410*x^5 + 2301*x^4 + 1587*x^3 + 653*x^2 - 4921*x + 3107, 1)
 

Normalized defining polynomial

\( x^{16} - x^{15} - 6 x^{14} + 14 x^{13} + 17 x^{12} - 50 x^{11} - 41 x^{10} - 8 x^{9} + 6 x^{8} + 71 x^{7} - 449 x^{6} + 410 x^{5} + 2301 x^{4} + 1587 x^{3} + 653 x^{2} - 4921 x + 3107 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(625307362087580183568001=23^{8}\cdot 41^{8}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $30.71$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $23, 41$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{11} - \frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{6} a^{12} + \frac{1}{6} a^{11} + \frac{1}{6} a^{10} + \frac{1}{6} a^{9} - \frac{1}{2} a^{7} - \frac{1}{3} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{6} a + \frac{1}{3}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} - \frac{1}{2} a^{8} + \frac{1}{6} a^{7} + \frac{1}{6} a^{6} - \frac{1}{3} a^{5} + \frac{1}{6} a^{4} - \frac{1}{2} a^{2} + \frac{1}{6} a - \frac{1}{3}$, $\frac{1}{11562} a^{14} + \frac{91}{11562} a^{13} + \frac{223}{11562} a^{12} - \frac{856}{5781} a^{11} - \frac{685}{3854} a^{10} + \frac{748}{1927} a^{9} - \frac{5507}{11562} a^{8} + \frac{1847}{11562} a^{7} - \frac{536}{1927} a^{6} + \frac{1499}{5781} a^{5} + \frac{5545}{11562} a^{4} + \frac{2099}{5781} a^{3} - \frac{104}{5781} a^{2} + \frac{719}{1927} a - \frac{479}{3854}$, $\frac{1}{20379215399487083997738} a^{15} + \frac{164458352351871179}{10189607699743541998869} a^{14} - \frac{922788588852835317949}{20379215399487083997738} a^{13} + \frac{1046292759732624107171}{20379215399487083997738} a^{12} - \frac{2499771804345194761243}{10189607699743541998869} a^{11} + \frac{3171033105266876434411}{20379215399487083997738} a^{10} - \frac{7960395026895778923791}{20379215399487083997738} a^{9} - \frac{6048735881666167853}{433600327648661361654} a^{8} + \frac{4385585758440000681725}{10189607699743541998869} a^{7} + \frac{1219627792205555191543}{3396535899914513999623} a^{6} - \frac{1981661318348505619504}{10189607699743541998869} a^{5} - \frac{4578006845236054544480}{10189607699743541998869} a^{4} + \frac{3107094398223852811981}{6793071799829027999246} a^{3} - \frac{281726460407547696400}{10189607699743541998869} a^{2} + \frac{2016714048822325509329}{20379215399487083997738} a + \frac{46123534610515762689}{165684678044610439006}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{3}$, which has order $3$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 144420.430272 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^2.SD_{16}$ (as 16T163):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 64
The 19 conjugacy class representatives for $C_2^2.SD_{16}$
Character table for $C_2^2.SD_{16}$

Intermediate fields

\(\Q(\sqrt{-23}) \), 4.0.21689.1, 8.0.19286921561.2, 8.0.19286921561.1, 8.0.790763784001.1

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Degree 16 sibling: data not computed
Degree 32 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/13.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/13.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ R ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
$23$23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
23.2.1.2$x^{2} + 46$$2$$1$$1$$C_2$$[\ ]_{2}$
$41$$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
$\Q_{41}$$x + 6$$1$$1$$0$Trivial$[\ ]$
41.2.1.1$x^{2} - 41$$2$$1$$1$$C_2$$[\ ]_{2}$
41.2.1.1$x^{2} - 41$$2$$1$$1$$C_2$$[\ ]_{2}$
41.4.3.1$x^{4} - 41$$4$$1$$3$$C_4$$[\ ]_{4}$
41.4.3.1$x^{4} - 41$$4$$1$$3$$C_4$$[\ ]_{4}$