Normalized defining polynomial
\( x^{16} - 7 x^{15} + 12 x^{14} + 6 x^{13} + 35 x^{12} - 291 x^{11} + 954 x^{10} - 3520 x^{9} + 9784 x^{8} - 13482 x^{7} + 5812 x^{6} + 3882 x^{5} + 13689 x^{4} + 18603 x^{3} + 18549 x^{2} + 6561 x + 729 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(624592617158605666432592809=13^{12}\cdot 173^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $\frac{1}{3} a^{6} + \frac{1}{3} a^{5} + \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a$, $\frac{1}{3} a^{7} + \frac{1}{3} a^{4} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{9} a^{8} + \frac{1}{9} a^{5} + \frac{4}{9} a^{4} - \frac{2}{9} a^{3} + \frac{2}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{9} + \frac{1}{9} a^{6} + \frac{4}{9} a^{5} - \frac{2}{9} a^{4} + \frac{2}{9} a^{3} + \frac{1}{3} a^{2}$, $\frac{1}{9} a^{10} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{4}{9} a^{5} - \frac{1}{9} a^{4} - \frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{9} a^{11} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{4}{9} a^{5} - \frac{1}{9} a^{4} - \frac{4}{9} a^{3} + \frac{4}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{9} a^{12} + \frac{1}{9} a^{7} + \frac{1}{9} a^{6} + \frac{4}{9} a^{5} - \frac{2}{9} a^{4} + \frac{1}{9} a^{2} + \frac{1}{3} a$, $\frac{1}{783} a^{13} - \frac{43}{783} a^{12} + \frac{10}{261} a^{11} - \frac{7}{261} a^{10} - \frac{4}{783} a^{9} - \frac{14}{261} a^{8} - \frac{11}{87} a^{7} - \frac{40}{783} a^{6} + \frac{382}{783} a^{5} + \frac{19}{261} a^{4} - \frac{137}{783} a^{3} + \frac{98}{261} a^{2} + \frac{10}{29} a + \frac{3}{29}$, $\frac{1}{7047} a^{14} - \frac{4}{7047} a^{13} + \frac{20}{783} a^{12} + \frac{122}{2349} a^{11} + \frac{134}{7047} a^{10} - \frac{8}{2349} a^{9} + \frac{13}{261} a^{8} + \frac{449}{7047} a^{7} - \frac{830}{7047} a^{6} - \frac{119}{2349} a^{5} + \frac{520}{7047} a^{4} + \frac{347}{2349} a^{3} - \frac{233}{783} a^{2} - \frac{71}{261} a + \frac{10}{87}$, $\frac{1}{44841330903505555048527} a^{15} - \frac{314094313026832339}{44841330903505555048527} a^{14} - \frac{4991391267700520959}{14947110301168518349509} a^{13} + \frac{9635463551724837494}{14947110301168518349509} a^{12} - \frac{867473325038393132428}{44841330903505555048527} a^{11} - \frac{109456175084715506}{57268621843557541569} a^{10} + \frac{223475185093276231900}{4982370100389506116503} a^{9} - \frac{2019875974241981654557}{44841330903505555048527} a^{8} - \frac{407918327767086627401}{44841330903505555048527} a^{7} + \frac{1194415151050242234923}{14947110301168518349509} a^{6} - \frac{18252577353169550346149}{44841330903505555048527} a^{5} - \frac{2126607845502549659651}{4982370100389506116503} a^{4} - \frac{711792055048239074362}{1660790033463168705501} a^{3} - \frac{111304154892739316410}{1660790033463168705501} a^{2} - \frac{3897179756067450149}{19089540614519180523} a - \frac{1854828442857567488}{184532225940352078389}$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 7203842.04142 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_4\wr C_2$ (as 16T28):
| A solvable group of order 32 |
| The 14 conjugacy class representatives for $C_4\wr C_2$ |
| Character table for $C_4\wr C_2$ |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.29237.1, 4.0.2197.1, 4.0.380081.1, 8.0.144461566561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 8 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $173$ | 173.4.2.2 | $x^{4} - 173 x^{2} + 149645$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ |
| 173.4.0.1 | $x^{4} - x + 26$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 173.8.4.1 | $x^{8} + 1556308 x^{4} - 5177717 x^{2} + 605523647716$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |