Normalized defining polynomial
\( x^{16} + 32 x^{14} + 104 x^{12} - 525 x^{10} - 660 x^{8} + 6681 x^{6} + 10738 x^{4} + 4203 x^{2} + 729 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(624592617158605666432592809=13^{12}\cdot 173^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $47.29$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 173$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a - \frac{1}{2}$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{10} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{11} + \frac{1}{3} a^{7} - \frac{1}{2} a^{6} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{6} a^{12} - \frac{1}{6} a^{8} - \frac{1}{2} a^{7} - \frac{1}{6} a^{6} + \frac{1}{3} a^{4} - \frac{1}{2} a^{3} - \frac{1}{6} a^{2} - \frac{1}{2}$, $\frac{1}{6} a^{13} - \frac{1}{6} a^{9} - \frac{1}{6} a^{7} - \frac{1}{6} a^{5} - \frac{1}{2} a^{4} + \frac{1}{3} a^{3} - \frac{1}{2}$, $\frac{1}{169194967575642} a^{14} - \frac{1405928027023}{169194967575642} a^{12} + \frac{3775604658559}{84597483787821} a^{10} - \frac{3746442512087}{18799440841738} a^{8} - \frac{3952470566942}{9399720420869} a^{6} - \frac{1}{2} a^{5} - \frac{11107777852736}{28199161262607} a^{4} - \frac{1}{2} a^{3} + \frac{6524114312495}{84597483787821} a^{2} - \frac{3752847461781}{9399720420869}$, $\frac{1}{1522754708180778} a^{15} - \frac{14802544644815}{761377354090389} a^{13} - \frac{77046274470703}{1522754708180778} a^{11} - \frac{29118964820303}{253792451363463} a^{9} - \frac{127111748031211}{507584902726926} a^{7} + \frac{7691662989002}{253792451363463} a^{5} - \frac{1}{2} a^{4} + \frac{316714888201172}{761377354090389} a^{3} + \frac{1894025497307}{169194967575642} a$
Class group and class number
$C_{7}$, which has order $7$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 9490787.05287 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{13}) \), 4.4.29237.1, 4.0.2197.1, 4.0.380081.1, 8.4.24991851015053.1, 8.4.147880775237.1, 8.0.144461566561.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| $173$ | 173.4.0.1 | $x^{4} - x + 26$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 173.4.0.1 | $x^{4} - x + 26$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 173.8.6.2 | $x^{8} + 1557 x^{4} + 748225$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |