Normalized defining polynomial
\( x^{16} - 30 x^{14} - 75 x^{12} + 10020 x^{10} - 25140 x^{8} - 934650 x^{6} + 2738850 x^{4} + 17874600 x^{2} + 23088025 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6197644519014400000000000000=2^{40}\cdot 5^{14}\cdot 31^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $54.58$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 31$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8}$, $\frac{1}{5} a^{9}$, $\frac{1}{155} a^{10} + \frac{1}{155} a^{8} - \frac{15}{31} a^{6} - \frac{11}{31} a^{4} - \frac{6}{31} a^{2}$, $\frac{1}{155} a^{11} + \frac{1}{155} a^{9} - \frac{15}{31} a^{7} - \frac{11}{31} a^{5} - \frac{6}{31} a^{3}$, $\frac{1}{24025} a^{12} - \frac{6}{4805} a^{10} - \frac{3}{961} a^{8} + \frac{82}{4805} a^{6} - \frac{1184}{4805} a^{4} + \frac{3}{31} a^{2}$, $\frac{1}{24025} a^{13} - \frac{6}{4805} a^{11} - \frac{3}{961} a^{9} + \frac{82}{4805} a^{7} - \frac{1184}{4805} a^{5} + \frac{3}{31} a^{3}$, $\frac{1}{372352307156362044025} a^{14} + \frac{4904611253697022}{372352307156362044025} a^{12} - \frac{47923858369789720}{14894092286254481761} a^{10} - \frac{4274704827373823507}{74470461431272408805} a^{8} - \frac{2869797072882771261}{14894092286254481761} a^{6} - \frac{548878454338963878}{2402272949395884155} a^{4} + \frac{1203974958488697}{15498535157392801} a^{2} + \frac{221636029108697}{499952747012671}$, $\frac{1}{372352307156362044025} a^{15} + \frac{4904611253697022}{372352307156362044025} a^{13} - \frac{47923858369789720}{14894092286254481761} a^{11} - \frac{4274704827373823507}{74470461431272408805} a^{9} - \frac{2869797072882771261}{14894092286254481761} a^{7} - \frac{548878454338963878}{2402272949395884155} a^{5} + \frac{1203974958488697}{15498535157392801} a^{3} + \frac{221636029108697}{499952747012671} a$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{12593781824846}{74470461431272408805} a^{14} + \frac{324189319718181}{74470461431272408805} a^{12} + \frac{1999050274942764}{74470461431272408805} a^{10} - \frac{22739498819196626}{14894092286254481761} a^{8} + \frac{5046829962161590}{14894092286254481761} a^{6} + \frac{55397726797084938}{480454589879176831} a^{4} - \frac{4867163388551240}{15498535157392801} a^{2} - \frac{35374193948816}{499952747012671} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 35251994.9545 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times D_4).C_2^3$ (as 16T315):
| A solvable group of order 128 |
| The 23 conjugacy class representatives for $(C_2\times D_4).C_2^3$ |
| Character table for $(C_2\times D_4).C_2^3$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\sqrt{2}) \), \(\Q(\sqrt{10}) \), \(\Q(\zeta_{5})\), 4.0.8000.2, \(\Q(\sqrt{2}, \sqrt{5})\), 8.0.64000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $31$ | 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.1.2 | $x^{2} + 217$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 31.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |