Normalized defining polynomial
\( x^{16} + 46 x^{14} - 152 x^{13} + 547 x^{12} - 7352 x^{11} + 19793 x^{10} - 111402 x^{9} + 606339 x^{8} - 1728796 x^{7} + 7540184 x^{6} - 24654776 x^{5} + 57489965 x^{4} - 155776620 x^{3} + 322183713 x^{2} - 331101126 x + 126306612 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61968568365574294423987478237184=2^{12}\cdot 3^{2}\cdot 163^{8}\cdot 241^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 163, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{7} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{7} - \frac{1}{2} a^{5} - \frac{1}{2} a$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{2} a^{7} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} + \frac{1}{4} a^{2}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{10} - \frac{1}{8} a^{9} - \frac{1}{24} a^{8} - \frac{3}{8} a^{7} - \frac{1}{8} a^{6} - \frac{1}{2} a^{5} + \frac{1}{4} a^{4} - \frac{1}{8} a^{3} + \frac{11}{24} a^{2} - \frac{1}{4} a - \frac{1}{2}$, $\frac{1}{48} a^{12} - \frac{1}{12} a^{10} + \frac{1}{6} a^{9} - \frac{5}{24} a^{8} + \frac{3}{16} a^{6} - \frac{3}{8} a^{5} + \frac{1}{16} a^{4} + \frac{1}{6} a^{3} + \frac{5}{48} a^{2} - \frac{1}{8} a - \frac{1}{4}$, $\frac{1}{96} a^{13} - \frac{1}{96} a^{12} + \frac{1}{12} a^{10} - \frac{1}{16} a^{9} + \frac{1}{16} a^{8} + \frac{15}{32} a^{7} + \frac{3}{32} a^{6} - \frac{1}{32} a^{5} + \frac{29}{96} a^{4} - \frac{5}{32} a^{3} + \frac{11}{32} a^{2} + \frac{7}{16} a + \frac{1}{8}$, $\frac{1}{576} a^{14} - \frac{5}{576} a^{12} - \frac{1}{72} a^{11} + \frac{17}{288} a^{10} + \frac{1}{9} a^{9} + \frac{11}{576} a^{8} - \frac{23}{96} a^{7} + \frac{35}{96} a^{6} + \frac{25}{288} a^{5} - \frac{143}{288} a^{4} + \frac{113}{288} a^{3} + \frac{167}{576} a^{2} - \frac{43}{96} a + \frac{5}{48}$, $\frac{1}{10980244351700595927743192030197343167655391770112} a^{15} + \frac{1198327621022963605972512310315764612620241967}{3660081450566865309247730676732447722551797256704} a^{14} - \frac{30244708414416606115678928047407566890783532345}{10980244351700595927743192030197343167655391770112} a^{13} + \frac{106334816735018542947188250952054027313448980515}{10980244351700595927743192030197343167655391770112} a^{12} + \frac{22887878409955626966276077591848915267513906061}{5490122175850297963871596015098671583827695885056} a^{11} + \frac{477895022983139835569688605376290782109989581581}{5490122175850297963871596015098671583827695885056} a^{10} + \frac{194499278394601271914820950431789957117287937923}{10980244351700595927743192030197343167655391770112} a^{9} + \frac{144112906509294735077459636821690563519173917375}{3660081450566865309247730676732447722551797256704} a^{8} - \frac{294517536648378006565454746457968428397958761703}{915020362641716327311932669183111930637949314176} a^{7} + \frac{129281569840028596869016242039105040023513572179}{343132635990643622741974750943666973989230992816} a^{6} + \frac{344449066431532383003948944373320649733311972679}{1372530543962574490967899003774667895956923971264} a^{5} - \frac{167265788969487193443768902485497763395005300227}{343132635990643622741974750943666973989230992816} a^{4} + \frac{3438783522270636655763284120550866784529527382605}{10980244351700595927743192030197343167655391770112} a^{3} + \frac{39628334532409947228427992460070218093816122709}{1220027150188955103082576892244149240850599085568} a^{2} - \frac{720901480579372009625275499039007028747898446649}{1830040725283432654623865338366223861275898628352} a - \frac{119965144225091750256936714810922124413526476329}{305006787547238775770644223061037310212649771392}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 633206132.987 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 69 conjugacy class representatives for t16n1656 are not computed |
| Character table for t16n1656 is not computed |
Intermediate fields
| 4.4.26569.1, 8.0.135535058112.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $163$ | $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 163.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 163.12.8.1 | $x^{12} - 489 x^{9} + 79707 x^{6} - 4330747 x^{3} + 52299590548968$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 241 | Data not computed | ||||||