Normalized defining polynomial
\( x^{16} - 6 x^{15} + 60 x^{14} - 268 x^{13} + 2823 x^{12} - 5840 x^{11} + 57115 x^{10} - 110248 x^{9} + 961663 x^{8} + 741178 x^{7} + 16018790 x^{6} + 24918136 x^{5} + 87965021 x^{4} + 48668900 x^{3} - 29208525 x^{2} - 10659500 x + 14667500 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61968568365574294423987478237184=2^{12}\cdot 3^{2}\cdot 163^{8}\cdot 241^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $97.05$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 163, 241$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{2}{5} a^{4} - \frac{2}{5} a^{3} + \frac{2}{5} a^{2} + \frac{1}{5} a$, $\frac{1}{10} a^{9} - \frac{1}{10} a^{7} + \frac{1}{5} a^{6} - \frac{3}{10} a^{5} - \frac{1}{5} a^{4} + \frac{1}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{2} a$, $\frac{1}{10} a^{10} - \frac{1}{10} a^{8} + \frac{1}{5} a^{7} - \frac{3}{10} a^{6} - \frac{1}{5} a^{5} + \frac{1}{5} a^{4} - \frac{2}{5} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{60} a^{11} - \frac{1}{30} a^{10} - \frac{1}{30} a^{8} - \frac{7}{15} a^{7} - \frac{7}{15} a^{6} - \frac{3}{20} a^{5} - \frac{1}{30} a^{4} + \frac{9}{20} a^{3} + \frac{2}{5} a^{2} + \frac{3}{20} a - \frac{1}{6}$, $\frac{1}{300} a^{12} - \frac{1}{300} a^{11} - \frac{2}{75} a^{10} + \frac{1}{30} a^{9} + \frac{1}{25} a^{8} + \frac{1}{3} a^{7} + \frac{89}{300} a^{6} + \frac{37}{300} a^{5} + \frac{1}{300} a^{4} - \frac{31}{100} a^{3} - \frac{11}{100} a^{2} + \frac{7}{60} a + \frac{1}{6}$, $\frac{1}{600} a^{13} + \frac{1}{600} a^{11} + \frac{1}{50} a^{10} - \frac{1}{75} a^{9} - \frac{29}{300} a^{8} - \frac{1}{600} a^{7} - \frac{23}{75} a^{6} + \frac{19}{300} a^{5} + \frac{17}{150} a^{4} - \frac{4}{25} a^{3} + \frac{34}{75} a^{2} - \frac{19}{120} a + \frac{5}{12}$, $\frac{1}{1800} a^{14} + \frac{1}{1800} a^{13} - \frac{1}{1800} a^{12} + \frac{1}{360} a^{11} - \frac{2}{45} a^{10} - \frac{13}{900} a^{9} + \frac{59}{600} a^{8} - \frac{9}{40} a^{7} - \frac{221}{450} a^{6} - \frac{389}{900} a^{5} - \frac{13}{180} a^{4} + \frac{113}{450} a^{3} - \frac{199}{600} a^{2} + \frac{83}{360} a - \frac{7}{36}$, $\frac{1}{7575192721476886048580330081650728003404843802000} a^{15} + \frac{1600987989498845852053130663824932861795094289}{7575192721476886048580330081650728003404843802000} a^{14} - \frac{15292886040445664304296691835140633717297293}{20200513923938362796214213551068608009079583472} a^{13} - \frac{2926994196273547682913752241082218420901167323}{7575192721476886048580330081650728003404843802000} a^{12} + \frac{175064203953070371185571297584760569887048037}{52605505010256153115141181122574500023644748625} a^{11} - \frac{36218420198475256358298319479244580772150846487}{757519272147688604858033008165072800340484380200} a^{10} + \frac{10844579925454918529795979087271721191362469877}{1515038544295377209716066016330145600680968760400} a^{9} + \frac{157684073435693854457406147035064508537062709729}{2525064240492295349526776693883576001134947934000} a^{8} + \frac{1463647070972529630412859210645117016180868414859}{3787596360738443024290165040825364001702421901000} a^{7} - \frac{99214227749736134051936890190405611927977516587}{1262532120246147674763388346941788000567473967000} a^{6} - \frac{26834601589871208554400927978804349864954141667}{189379818036922151214508252041268200085121095050} a^{5} - \frac{108062526062621854168161860458179804233891279954}{473449545092305378036270630103170500212802737625} a^{4} + \frac{502944213301498836803599366051973881580573298521}{7575192721476886048580330081650728003404843802000} a^{3} + \frac{130825841980198498537499143171430594809937690651}{1515038544295377209716066016330145600680968760400} a^{2} + \frac{49586795294332235326866526883480573005660476433}{151503854429537720971606601633014560068096876040} a - \frac{1246759670494963261149796023566367215337630730}{3787596360738443024290165040825364001702421901}$
Class group and class number
$C_{8}$, which has order $8$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 868843789.156 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 6144 |
| The 69 conjugacy class representatives for t16n1656 are not computed |
| Character table for t16n1656 is not computed |
Intermediate fields
| 4.4.26569.1, 8.0.135535058112.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/7.12.0.1}{12} }{,}\,{\href{/LocalNumberField/7.2.0.1}{2} }{,}\,{\href{/LocalNumberField/7.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/11.6.0.1}{6} }{,}\,{\href{/LocalNumberField/11.3.0.1}{3} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.12.0.1}{12} }{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/23.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/29.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/43.6.0.1}{6} }{,}\,{\href{/LocalNumberField/43.4.0.1}{4} }{,}\,{\href{/LocalNumberField/43.3.0.1}{3} }^{2}$ | ${\href{/LocalNumberField/47.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/47.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 2.2.0.1 | $x^{2} - x + 1$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| 2.6.6.6 | $x^{6} - 13 x^{4} + 7 x^{2} - 3$ | $2$ | $3$ | $6$ | $A_4\times C_2$ | $[2, 2, 2]^{3}$ | |
| $3$ | 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.3.0.1 | $x^{3} - x + 1$ | $1$ | $3$ | $0$ | $C_3$ | $[\ ]^{3}$ | |
| 3.4.2.1 | $x^{4} + 9 x^{2} + 36$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $163$ | $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{163}$ | $x + 4$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 163.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 163.12.8.1 | $x^{12} - 489 x^{9} + 79707 x^{6} - 4330747 x^{3} + 52299590548968$ | $3$ | $4$ | $8$ | $C_{12}$ | $[\ ]_{3}^{4}$ | |
| 241 | Data not computed | ||||||