Normalized defining polynomial
\( x^{16} - 12 x^{14} - 12 x^{13} + 114 x^{12} - 384 x^{10} - 108 x^{9} + 2364 x^{8} - 4176 x^{7} + 1620 x^{6} + 2916 x^{5} - 1782 x^{4} - 3888 x^{3} + 5904 x^{2} - 3132 x + 603 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(618707859192665295814656=2^{40}\cdot 3^{14}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} - \frac{1}{2}$, $\frac{1}{6} a^{9} - \frac{1}{2} a$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{2}$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{3}$, $\frac{1}{12} a^{12} - \frac{1}{12} a^{8} - \frac{1}{4} a^{4} + \frac{1}{4}$, $\frac{1}{12} a^{13} - \frac{1}{12} a^{9} - \frac{1}{4} a^{5} + \frac{1}{4} a$, $\frac{1}{1092} a^{14} - \frac{2}{91} a^{13} + \frac{1}{26} a^{12} + \frac{1}{26} a^{11} + \frac{23}{1092} a^{10} - \frac{15}{182} a^{9} - \frac{19}{546} a^{8} - \frac{22}{91} a^{7} + \frac{139}{364} a^{6} + \frac{19}{91} a^{5} + \frac{25}{182} a^{4} - \frac{3}{26} a^{3} - \frac{115}{364} a^{2} - \frac{45}{182} a + \frac{47}{182}$, $\frac{1}{20652098378351076} a^{15} + \frac{646513836835}{6884032792783692} a^{14} - \frac{11180842324035}{327811085370652} a^{13} + \frac{581955293533}{25216237336204} a^{12} - \frac{344490507761831}{6884032792783692} a^{11} + \frac{539209918318601}{6884032792783692} a^{10} + \frac{11348660185133}{176513661353428} a^{9} - \frac{26813765605941}{2294677597594564} a^{8} + \frac{1110134253514747}{6884032792783692} a^{7} - \frac{679771382814207}{2294677597594564} a^{6} + \frac{69315020622927}{176513661353428} a^{5} + \frac{1879752988955}{17253215019508} a^{4} - \frac{11638996092855}{38892840637196} a^{3} + \frac{997880842370767}{2294677597594564} a^{2} + \frac{483778465922445}{2294677597594564} a + \frac{104266178243901}{327811085370652}$
Class group and class number
$C_{2}$, which has order $2$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{131004835111}{331792596529} a^{15} + \frac{251566333157}{995377789587} a^{14} - \frac{3035569682785}{663585193058} a^{13} - \frac{30511557315545}{3981511158348} a^{12} + \frac{13301198072939}{331792596529} a^{11} + \frac{16994298426933}{663585193058} a^{10} - \frac{89647799249083}{663585193058} a^{9} - \frac{171060452577865}{1327170386116} a^{8} + \frac{282200207548005}{331792596529} a^{7} - \frac{366734058539563}{331792596529} a^{6} - \frac{43065954144273}{663585193058} a^{5} + \frac{1469680494846777}{1327170386116} a^{4} + \frac{19065653535}{5623603331} a^{3} - \frac{1015565347631367}{663585193058} a^{2} + \frac{898605897245421}{663585193058} a - \frac{496548639730825}{1327170386116} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 678431.409127 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T486):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.12096.1, 4.0.1008.2, 4.0.1728.1, 8.0.2341011456.9 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/13.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 3 | Data not computed | ||||||
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |