Normalized defining polynomial
\( x^{16} - 8 x^{15} + 24 x^{14} - 4 x^{13} - 160 x^{12} + 336 x^{11} + 328 x^{10} - 2348 x^{9} + 2784 x^{8} + 3040 x^{7} - 10832 x^{6} + 4692 x^{5} + 21824 x^{4} - 47512 x^{3} + 45744 x^{2} - 22004 x + 4243 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(618707859192665295814656=2^{40}\cdot 3^{14}\cdot 7^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.69$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{6} a^{8} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{3} a^{4} + \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a + \frac{1}{6}$, $\frac{1}{6} a^{9} - \frac{1}{2} a - \frac{1}{3}$, $\frac{1}{6} a^{10} - \frac{1}{2} a^{2} - \frac{1}{3} a$, $\frac{1}{6} a^{11} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2}$, $\frac{1}{18} a^{12} + \frac{1}{18} a^{9} + \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{5} - \frac{1}{2} a^{4} - \frac{1}{9} a^{3} + \frac{1}{3} a^{2} + \frac{1}{6} a + \frac{2}{9}$, $\frac{1}{126} a^{13} - \frac{1}{63} a^{12} + \frac{1}{21} a^{11} - \frac{1}{63} a^{10} + \frac{5}{63} a^{9} + \frac{1}{21} a^{8} + \frac{1}{7} a^{7} + \frac{2}{7} a^{6} + \frac{11}{42} a^{5} + \frac{26}{63} a^{4} - \frac{13}{63} a^{3} + \frac{10}{21} a^{2} + \frac{20}{63} a + \frac{29}{63}$, $\frac{1}{126} a^{14} + \frac{1}{63} a^{12} + \frac{5}{63} a^{11} + \frac{1}{21} a^{10} + \frac{5}{126} a^{9} + \frac{1}{14} a^{8} + \frac{5}{21} a^{7} + \frac{1}{6} a^{6} - \frac{25}{63} a^{5} - \frac{1}{21} a^{4} - \frac{17}{63} a^{3} - \frac{25}{63} a^{2} + \frac{11}{42} a + \frac{11}{126}$, $\frac{1}{304349218838049294} a^{15} + \frac{12486353642575}{14492819944669014} a^{14} + \frac{56129923707997}{14492819944669014} a^{13} - \frac{138137215282298}{21739229917003521} a^{12} - \frac{3262707802669498}{50724869806341549} a^{11} + \frac{376049377223379}{5636096645149061} a^{10} + \frac{9565349512060907}{152174609419024647} a^{9} - \frac{1746041600460025}{101449739612683098} a^{8} - \frac{25639073727561733}{101449739612683098} a^{7} - \frac{21744690323731217}{304349218838049294} a^{6} - \frac{29795730994948327}{101449739612683098} a^{5} - \frac{12931153410668033}{50724869806341549} a^{4} + \frac{30774594973189642}{152174609419024647} a^{3} - \frac{3132344103489586}{16908289935447183} a^{2} + \frac{796843373100769}{3901913062026273} a - \frac{32949965947868939}{304349218838049294}$
Class group and class number
$C_{4}$, which has order $4$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{137304800}{13774391001} a^{15} + \frac{897453628}{13774391001} a^{14} - \frac{287946055}{1967770143} a^{13} - \frac{734747444}{4591463667} a^{12} + \frac{2627341018}{1967770143} a^{11} - \frac{2863310152}{1967770143} a^{10} - \frac{70367704159}{13774391001} a^{9} + \frac{144947586677}{9182927334} a^{8} - \frac{27840881218}{4591463667} a^{7} - \frac{499325536190}{13774391001} a^{6} + \frac{767347352329}{13774391001} a^{5} + \frac{356387398124}{13774391001} a^{4} - \frac{791291927332}{4591463667} a^{3} + \frac{3229436293378}{13774391001} a^{2} - \frac{2024906698309}{13774391001} a + \frac{999198064057}{27548782002} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 463430.206047 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2.C_2^5.C_2$ (as 16T486):
| A solvable group of order 256 |
| The 34 conjugacy class representatives for $C_2^2.C_2^5.C_2$ |
| Character table for $C_2^2.C_2^5.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{-3}) \), 4.0.4032.1, 4.0.12096.1, 4.0.432.1, 8.0.2341011456.4 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/37.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $3$ | 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| $7$ | $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{7}$ | $x + 2$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 7.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 7.2.1.1 | $x^{2} - 7$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.2.1.2 | $x^{2} + 14$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 7.4.2.1 | $x^{4} + 35 x^{2} + 441$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |