Normalized defining polynomial
\( x^{16} - 3 x^{15} + 168 x^{14} - 118 x^{13} + 8143 x^{12} + 19673 x^{11} + 268861 x^{10} + 996458 x^{9} + 6562747 x^{8} + 28125680 x^{7} + 116312303 x^{6} + 424196239 x^{5} + 1236318043 x^{4} + 3216880296 x^{3} + 7235716110 x^{2} + 10185930767 x + 17602483739 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61841248347955294332328765542314401=13^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $149.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{3} a^{14} - \frac{1}{3} a^{12} - \frac{1}{3} a^{11} - \frac{1}{3} a^{10} - \frac{1}{3} a^{8} - \frac{1}{3} a^{7} - \frac{1}{3} a^{6} + \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{735384122626824222491540095375717167665655003828914945701701416510268423} a^{15} + \frac{11738717040869622238855202182191879342592477993676984472006859916161434}{245128040875608074163846698458572389221885001276304981900567138836756141} a^{14} - \frac{55399416463338912894573479973785172816575609752891241282927022645975589}{735384122626824222491540095375717167665655003828914945701701416510268423} a^{13} - \frac{253461479806437536549434250267026290281040428408026875573364898205583870}{735384122626824222491540095375717167665655003828914945701701416510268423} a^{12} + \frac{29557294368606552883871828984670835151918593962265240163048517748148000}{735384122626824222491540095375717167665655003828914945701701416510268423} a^{11} - \frac{116556598319913450171774318847526258638275166248887558340248049708269951}{245128040875608074163846698458572389221885001276304981900567138836756141} a^{10} + \frac{133385643843943504980907281456405878336862538620247935908718634794279413}{735384122626824222491540095375717167665655003828914945701701416510268423} a^{9} - \frac{224447391321357525811748128705610981859324720160207122384872388488757235}{735384122626824222491540095375717167665655003828914945701701416510268423} a^{8} + \frac{161124116958432768381142412411139223126598202384333504457325592109830137}{735384122626824222491540095375717167665655003828914945701701416510268423} a^{7} - \frac{22974974312468788604836460785830853611069885635266673413351112451795255}{245128040875608074163846698458572389221885001276304981900567138836756141} a^{6} + \frac{64051286892088891407082081710180955308706041286826194969404279339480098}{245128040875608074163846698458572389221885001276304981900567138836756141} a^{5} + \frac{314049717561724651289645512470686673970527396981433026917254400798667994}{735384122626824222491540095375717167665655003828914945701701416510268423} a^{4} - \frac{28436929454733189342691880621828775510621438269935493004205772017811261}{735384122626824222491540095375717167665655003828914945701701416510268423} a^{3} - \frac{58225585842805866891410458426291455388538940519038221670880333877641931}{735384122626824222491540095375717167665655003828914945701701416510268423} a^{2} + \frac{325481855061790235376171771131609992771077258258729822032997639053346221}{735384122626824222491540095375717167665655003828914945701701416510268423} a + \frac{92772658612854696379564991708855293266736105440419665083137382770929541}{245128040875608074163846698458572389221885001276304981900567138836756141}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{68}\times C_{68}$, which has order $147968$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 233495.847112 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 7 conjugacy class representatives for $Q_{16}$ |
| Character table for $Q_{16}$ |
Intermediate fields
| \(\Q(\sqrt{793}) \), \(\Q(\sqrt{13}) \), \(\Q(\sqrt{61}) \), \(\Q(\sqrt{13}, \sqrt{61})\), 4.4.10309.1 x2, 4.4.48373.1 x2, 8.8.395451064801.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $61$ | 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.1 | $x^{4} - 61$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |