Normalized defining polynomial
\( x^{16} + 37 x^{14} - 72 x^{13} + 994 x^{12} - 1998 x^{11} + 18125 x^{10} - 71199 x^{9} + 167858 x^{8} - 831663 x^{7} + 2597153 x^{6} - 9535563 x^{5} + 21565485 x^{4} - 26219943 x^{3} + 63196200 x^{2} - 79315929 x + 190380537 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61841248347955294332328765542314401=13^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $149.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $\frac{1}{3} a^{3} - \frac{1}{3} a$, $\frac{1}{3} a^{4} - \frac{1}{3} a^{2}$, $\frac{1}{3} a^{5} - \frac{1}{3} a$, $\frac{1}{9} a^{6} + \frac{1}{9} a^{4} - \frac{2}{9} a^{2}$, $\frac{1}{9} a^{7} + \frac{1}{9} a^{5} + \frac{1}{9} a^{3} - \frac{1}{3} a$, $\frac{1}{54} a^{8} - \frac{1}{27} a^{7} - \frac{1}{27} a^{6} + \frac{2}{27} a^{5} + \frac{1}{54} a^{4} - \frac{1}{27} a^{3} - \frac{1}{6} a^{2} - \frac{1}{6} a - \frac{1}{2}$, $\frac{1}{162} a^{9} + \frac{1}{27} a^{7} - \frac{5}{54} a^{5} - \frac{1}{162} a^{3} - \frac{1}{2} a^{2} + \frac{1}{18} a$, $\frac{1}{162} a^{10} - \frac{1}{27} a^{7} - \frac{1}{54} a^{6} + \frac{2}{27} a^{5} - \frac{7}{162} a^{4} + \frac{7}{54} a^{3} + \frac{7}{18} a^{2} - \frac{1}{3} a$, $\frac{1}{486} a^{11} + \frac{1}{486} a^{10} + \frac{1}{162} a^{8} - \frac{1}{18} a^{7} - \frac{1}{54} a^{6} + \frac{41}{486} a^{5} + \frac{77}{486} a^{4} - \frac{7}{81} a^{3} - \frac{7}{27} a^{2} - \frac{1}{18} a - \frac{1}{2}$, $\frac{1}{25272} a^{12} - \frac{23}{25272} a^{11} - \frac{7}{2808} a^{10} - \frac{11}{8424} a^{9} + \frac{1}{156} a^{8} - \frac{43}{936} a^{7} - \frac{47}{12636} a^{6} - \frac{121}{1944} a^{5} - \frac{595}{4212} a^{4} + \frac{43}{2808} a^{3} + \frac{175}{936} a^{2} - \frac{17}{156} a - \frac{49}{104}$, $\frac{1}{25272} a^{13} - \frac{5}{6318} a^{11} + \frac{1}{972} a^{10} + \frac{1}{936} a^{9} + \frac{23}{8424} a^{8} + \frac{815}{25272} a^{7} - \frac{17}{936} a^{6} - \frac{3193}{25272} a^{5} - \frac{3515}{25272} a^{4} + \frac{503}{4212} a^{3} + \frac{797}{2808} a^{2} + \frac{125}{936} a + \frac{17}{104}$, $\frac{1}{75816} a^{14} + \frac{1}{75816} a^{13} - \frac{1}{75816} a^{12} - \frac{67}{75816} a^{11} + \frac{1}{486} a^{10} - \frac{73}{25272} a^{9} + \frac{187}{37908} a^{8} - \frac{3451}{75816} a^{7} + \frac{1727}{37908} a^{6} + \frac{421}{5832} a^{5} - \frac{1265}{25272} a^{4} - \frac{77}{1053} a^{3} + \frac{977}{2808} a^{2} - \frac{5}{39} a - \frac{5}{52}$, $\frac{1}{24826784159406326624199249793213608} a^{15} - \frac{7366531733898744712433156398}{3103348019925790828024906224151701} a^{14} - \frac{180228377158293961095548598505}{24826784159406326624199249793213608} a^{13} - \frac{38674207767608322782645854657}{6206696039851581656049812448303402} a^{12} + \frac{4021412810661488114093705193487}{8275594719802108874733083264404536} a^{11} + \frac{9947055996208078978427102801651}{8275594719802108874733083264404536} a^{10} - \frac{35653948198811314766844670271135}{12413392079703163312099624896606804} a^{9} - \frac{7416096795594041481033990555227}{3103348019925790828024906224151701} a^{8} + \frac{50147164011567578563077006038771}{954876313823320254776894222815908} a^{7} - \frac{48411950508026204188690095970277}{6206696039851581656049812448303402} a^{6} - \frac{122146973343519950653503172864793}{8275594719802108874733083264404536} a^{5} + \frac{18391365784172014286577578476168}{114938815552807067704626156450063} a^{4} - \frac{48596015794649248011152988543929}{306503508140818847212336417200168} a^{3} - \frac{10015361718156588809199298791403}{76625877035204711803084104300042} a^{2} + \frac{20307239948757491609100496013759}{102167836046939615737445472400056} a - \frac{5037076162184265505595133860591}{11351981782993290637493941377784}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{36}\times C_{360}$, which has order $103680$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 308589653.463 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $61$ | 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |