Normalized defining polynomial
\( x^{16} - 4 x^{15} + 153 x^{14} - 518 x^{13} + 8811 x^{12} - 23274 x^{11} + 227730 x^{10} - 437329 x^{9} + 2534757 x^{8} - 3186879 x^{7} + 8460029 x^{6} - 126984 x^{5} + 6144281 x^{4} - 9463368 x^{3} + 5579973 x^{2} + 24448631 x + 15614639 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61841248347955294332328765542314401=13^{12}\cdot 61^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $149.44$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 61$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $\frac{1}{3} a^{5} - \frac{1}{3} a^{3} - \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{3} a^{6} - \frac{1}{3} a^{4} - \frac{1}{3} a^{3} + \frac{1}{3} a^{2} - \frac{1}{3} a$, $\frac{1}{3} a^{7} - \frac{1}{3} a^{4} + \frac{1}{3} a^{2} + \frac{1}{3} a - \frac{1}{3}$, $\frac{1}{36} a^{8} - \frac{1}{18} a^{7} - \frac{1}{9} a^{5} + \frac{5}{36} a^{4} + \frac{5}{18} a^{3} + \frac{17}{36} a^{2} + \frac{1}{12} a + \frac{11}{36}$, $\frac{1}{36} a^{9} - \frac{1}{9} a^{7} - \frac{1}{9} a^{6} - \frac{1}{12} a^{5} - \frac{4}{9} a^{4} + \frac{1}{36} a^{3} + \frac{1}{36} a^{2} + \frac{17}{36} a - \frac{7}{18}$, $\frac{1}{36} a^{10} - \frac{1}{12} a^{6} + \frac{1}{9} a^{5} + \frac{1}{4} a^{4} + \frac{5}{36} a^{3} - \frac{11}{36} a^{2} + \frac{5}{18} a - \frac{1}{9}$, $\frac{1}{972} a^{11} + \frac{2}{243} a^{10} - \frac{7}{972} a^{9} - \frac{2}{243} a^{8} - \frac{151}{972} a^{7} + \frac{20}{243} a^{6} + \frac{11}{486} a^{5} + \frac{413}{972} a^{4} - \frac{137}{486} a^{3} + \frac{55}{972} a^{2} - \frac{115}{972} a - \frac{23}{486}$, $\frac{1}{797040} a^{12} - \frac{1}{265680} a^{11} - \frac{563}{79704} a^{10} + \frac{293}{26568} a^{9} - \frac{37}{8856} a^{8} + \frac{89707}{797040} a^{7} + \frac{15869}{265680} a^{6} - \frac{1171}{11070} a^{5} - \frac{2819}{797040} a^{4} + \frac{15341}{88560} a^{3} - \frac{28433}{88560} a^{2} + \frac{22441}{797040} a + \frac{123167}{797040}$, $\frac{1}{797040} a^{13} + \frac{101}{797040} a^{11} - \frac{323}{39852} a^{10} + \frac{125}{19926} a^{9} - \frac{10483}{797040} a^{8} - \frac{4663}{199260} a^{7} + \frac{30629}{797040} a^{6} + \frac{13957}{159408} a^{5} - \frac{8501}{99630} a^{4} - \frac{19675}{79704} a^{3} - \frac{14173}{79704} a^{2} - \frac{13751}{79704} a + \frac{282581}{797040}$, $\frac{1}{2391120} a^{14} - \frac{1}{2391120} a^{12} - \frac{23}{132840} a^{11} + \frac{263}{119556} a^{10} + \frac{26917}{2391120} a^{9} - \frac{1061}{199260} a^{8} + \frac{48491}{478224} a^{7} + \frac{278191}{2391120} a^{6} + \frac{3257}{49815} a^{5} + \frac{277717}{597780} a^{4} + \frac{44932}{149445} a^{3} + \frac{27613}{298890} a^{2} - \frac{76121}{2391120} a - \frac{291827}{1195560}$, $\frac{1}{6289480472494443919385349658264560} a^{15} - \frac{46597448414821643751233597}{1572370118123610979846337414566140} a^{14} + \frac{657356152234516564133057243}{6289480472494443919385349658264560} a^{13} - \frac{120088037694890947519212281}{1257896094498888783877069931652912} a^{12} + \frac{63403033130405018822913332833}{6289480472494443919385349658264560} a^{11} + \frac{1812694490588742706042229466407}{6289480472494443919385349658264560} a^{10} - \frac{42563797292717200446314109096979}{3144740236247221959692674829132280} a^{9} - \frac{41594526882662266581116986969691}{6289480472494443919385349658264560} a^{8} - \frac{81760011921540718969761226553035}{628948047249444391938534965826456} a^{7} - \frac{161429385661130479261963842227309}{6289480472494443919385349658264560} a^{6} - \frac{45815177964205885115524134968273}{1572370118123610979846337414566140} a^{5} - \frac{2904712481392726259428790552598763}{6289480472494443919385349658264560} a^{4} + \frac{12346342377517836510519763972919}{2096493490831481306461783219421520} a^{3} - \frac{24798677897632971350509506442999}{69883116361049376882059440647384} a^{2} + \frac{34615662281983276689993844881367}{139766232722098753764118881294768} a + \frac{1424496376566230920385205673928003}{6289480472494443919385349658264560}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}\times C_{4}\times C_{8}$, which has order $512$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 308589653.463 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 16 |
| The 10 conjugacy class representatives for $C_4:C_4$ |
| Character table for $C_4:C_4$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/3.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $13$ | 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 13.4.3.2 | $x^{4} - 52$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $61$ | 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 61.4.3.2 | $x^{4} - 244$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |