Normalized defining polynomial
\( x^{16} - 6 x^{15} + 20 x^{14} - 32 x^{13} + 72 x^{12} - 16 x^{11} + 200 x^{10} + 56 x^{9} + 136 x^{8} - 64 x^{7} + 896 x^{6} + 672 x^{5} + 616 x^{4} + 496 x^{3} + 384 x^{2} + 64 x + 16 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6169143218176000000000000=2^{24}\cdot 5^{12}\cdot 197^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $35.43$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 197$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4}$, $\frac{1}{2} a^{5}$, $\frac{1}{2} a^{6}$, $\frac{1}{2} a^{7}$, $\frac{1}{4} a^{8}$, $\frac{1}{4} a^{9}$, $\frac{1}{4} a^{10}$, $\frac{1}{4} a^{11}$, $\frac{1}{8} a^{12}$, $\frac{1}{8} a^{13}$, $\frac{1}{8} a^{14}$, $\frac{1}{1361065629092259848} a^{15} + \frac{3600970583807767}{170133203636532481} a^{14} - \frac{3446778816390221}{1361065629092259848} a^{13} - \frac{72314732680846179}{1361065629092259848} a^{12} - \frac{9630758402210011}{680532814546129924} a^{11} + \frac{23495355068820913}{340266407273064962} a^{10} + \frac{14058057966813921}{170133203636532481} a^{9} - \frac{52398737974999305}{680532814546129924} a^{8} - \frac{73259186630441905}{340266407273064962} a^{7} + \frac{28241237770748179}{340266407273064962} a^{6} - \frac{10743832104584651}{340266407273064962} a^{5} + \frac{36204107992823200}{170133203636532481} a^{4} + \frac{40598665820526328}{170133203636532481} a^{3} + \frac{61781082551176896}{170133203636532481} a^{2} - \frac{1643277013149331}{170133203636532481} a - \frac{29977433772638107}{170133203636532481}$
Class group and class number
$C_{2}\times C_{12}$, which has order $24$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{4748381644609069}{340266407273064962} a^{15} + \frac{54191820394978653}{680532814546129924} a^{14} - \frac{42672223688096969}{170133203636532481} a^{13} + \frac{465806374733939805}{1361065629092259848} a^{12} - \frac{271813456489229311}{340266407273064962} a^{11} - \frac{65611016218177133}{340266407273064962} a^{10} - \frac{417904567094369740}{170133203636532481} a^{9} - \frac{1137197858810859167}{680532814546129924} a^{8} - \frac{477657978093004407}{340266407273064962} a^{7} + \frac{82505174937136723}{170133203636532481} a^{6} - \frac{2010047423855191993}{170133203636532481} a^{5} - \frac{2302704095659254417}{170133203636532481} a^{4} - \frac{1382167425580197528}{170133203636532481} a^{3} - \frac{1230109080389459942}{170133203636532481} a^{2} - \frac{930719921881746162}{170133203636532481} a - \frac{157283344253338554}{170133203636532481} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 106122.033859 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^4.(C_4\times S_3)$ (as 16T725):
| A solvable group of order 384 |
| The 28 conjugacy class representatives for $C_2^4.(C_4\times S_3)$ |
| Character table for $C_2^4.(C_4\times S_3)$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{5})\), 8.8.99351040000.3 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 12 siblings: | data not computed |
| Degree 16 sibling: | data not computed |
| Degree 24 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.12.0.1}{12} }{,}\,{\href{/LocalNumberField/3.4.0.1}{4} }$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/11.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/13.12.0.1}{12} }{,}\,{\href{/LocalNumberField/13.4.0.1}{4} }$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/31.2.0.1}{2} }^{2}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.3.0.1}{3} }^{4}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.6.0.1}{6} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| 5 | Data not computed | ||||||
| $197$ | 197.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |
| 197.4.0.1 | $x^{4} - x + 18$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 197.8.4.1 | $x^{8} + 1397124 x^{4} - 7645373 x^{2} + 487988867844$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |