Normalized defining polynomial
\( x^{16} + 14 x^{14} - 19 x^{13} + 20 x^{12} - 192 x^{11} - 88 x^{10} - 339 x^{9} + 706 x^{8} + 1248 x^{7} + 4624 x^{6} + 5077 x^{5} + 5763 x^{4} + 5464 x^{3} + 1060 x^{2} - 224 x + 2416 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(616308629868476806640625=3^{12}\cdot 5^{12}\cdot 41^{6}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $3, 5, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{2} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{8} - \frac{1}{2} a^{4} - \frac{1}{2} a^{2} - \frac{1}{2} a$, $\frac{1}{2} a^{9} - \frac{1}{2} a^{5} - \frac{1}{2} a^{3} - \frac{1}{2} a^{2}$, $\frac{1}{4} a^{10} - \frac{1}{4} a^{8} - \frac{1}{4} a^{7} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3} + \frac{1}{4} a^{2}$, $\frac{1}{4} a^{11} - \frac{1}{4} a^{9} - \frac{1}{4} a^{8} + \frac{1}{4} a^{6} + \frac{1}{4} a^{5} + \frac{1}{4} a^{4} + \frac{1}{4} a^{3}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{11} - \frac{1}{12} a^{9} + \frac{1}{6} a^{8} - \frac{1}{4} a^{7} + \frac{5}{12} a^{6} - \frac{1}{8} a^{5} - \frac{3}{8} a^{4} - \frac{5}{12} a^{3} - \frac{5}{24} a^{2} - \frac{1}{4} a + \frac{1}{6}$, $\frac{1}{24} a^{13} - \frac{1}{24} a^{11} - \frac{1}{12} a^{10} + \frac{1}{12} a^{9} - \frac{1}{12} a^{8} + \frac{1}{6} a^{7} + \frac{7}{24} a^{6} - \frac{1}{2} a^{5} + \frac{5}{24} a^{4} + \frac{3}{8} a^{3} - \frac{11}{24} a^{2} - \frac{1}{12} a + \frac{1}{6}$, $\frac{1}{15312} a^{14} + \frac{139}{7656} a^{13} + \frac{13}{957} a^{12} + \frac{141}{5104} a^{11} + \frac{497}{7656} a^{10} + \frac{353}{1914} a^{9} + \frac{211}{1914} a^{8} + \frac{1071}{5104} a^{7} - \frac{409}{1914} a^{6} - \frac{281}{7656} a^{5} + \frac{43}{696} a^{4} + \frac{7037}{15312} a^{3} - \frac{3541}{15312} a^{2} - \frac{549}{2552} a - \frac{809}{3828}$, $\frac{1}{4683606409897401063264} a^{15} + \frac{20534543818220803}{780601068316233510544} a^{14} + \frac{15891029355787559351}{780601068316233510544} a^{13} - \frac{29201482984127064485}{1561202136632467021088} a^{12} - \frac{22850444110737805739}{2341803204948700531632} a^{11} + \frac{24649385376721971215}{292725400618587566454} a^{10} - \frac{57808420884329426957}{585450801237175132908} a^{9} + \frac{614583158165051631661}{4683606409897401063264} a^{8} + \frac{130616855427120974449}{1170901602474350265816} a^{7} + \frac{120255658612838123509}{585450801237175132908} a^{6} - \frac{19284551197636515842}{48787566769764594409} a^{5} + \frac{363342228997343243691}{1561202136632467021088} a^{4} + \frac{1531800520257116330681}{4683606409897401063264} a^{3} - \frac{56840381620213548535}{2341803204948700531632} a^{2} + \frac{5109702501704730667}{1170901602474350265816} a + \frac{32717873025936492883}{97575133539529188818}$
Class group and class number
$C_{2}\times C_{10}$, which has order $20$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 10253.3634365 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$(C_2\times C_4).D_4$ (as 16T121):
| A solvable group of order 64 |
| The 28 conjugacy class representatives for $(C_2\times C_4).D_4$ |
| Character table for $(C_2\times C_4).D_4$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), \(\Q(\zeta_{15})^+\), 4.4.9225.1, 4.4.5125.1, 8.0.31402130625.1, 8.0.785053265625.2, 8.8.2127515625.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | R | R | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/11.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $3$ | 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ |
| 3.8.6.3 | $x^{8} - 3 x^{4} + 18$ | $4$ | $2$ | $6$ | $C_8:C_2$ | $[\ ]_{4}^{4}$ | |
| 5 | Data not computed | ||||||
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.8.6.1 | $x^{8} - 9881 x^{4} + 34857216$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |