Properties

Label 16.0.61552138713...0625.1
Degree $16$
Signature $[0, 8]$
Discriminant $5^{14}\cdot 11^{8}\cdot 19^{6}$
Root discriminant $40.91$
Ramified primes $5, 11, 19$
Class number $8$ (GRH)
Class group $[2, 2, 2]$ (GRH)
Galois group $C_2^3.C_4$ (as 16T41)

Related objects

Downloads

Learn more about

Show commands for: Magma / SageMath / Pari/GP

magma: R<x> := PolynomialRing(Rationals()); K<a> := NumberField(R![3191, -11857, 25706, -24778, 18471, -8251, -2636, 7716, -5608, 2041, 44, -401, 326, -143, 36, -7, 1]);
 
sage: x = polygen(QQ); K.<a> = NumberField(x^16 - 7*x^15 + 36*x^14 - 143*x^13 + 326*x^12 - 401*x^11 + 44*x^10 + 2041*x^9 - 5608*x^8 + 7716*x^7 - 2636*x^6 - 8251*x^5 + 18471*x^4 - 24778*x^3 + 25706*x^2 - 11857*x + 3191)
 
gp: K = bnfinit(x^16 - 7*x^15 + 36*x^14 - 143*x^13 + 326*x^12 - 401*x^11 + 44*x^10 + 2041*x^9 - 5608*x^8 + 7716*x^7 - 2636*x^6 - 8251*x^5 + 18471*x^4 - 24778*x^3 + 25706*x^2 - 11857*x + 3191, 1)
 

Normalized defining polynomial

\( x^{16} - 7 x^{15} + 36 x^{14} - 143 x^{13} + 326 x^{12} - 401 x^{11} + 44 x^{10} + 2041 x^{9} - 5608 x^{8} + 7716 x^{7} - 2636 x^{6} - 8251 x^{5} + 18471 x^{4} - 24778 x^{3} + 25706 x^{2} - 11857 x + 3191 \)

magma: DefiningPolynomial(K);
 
sage: K.defining_polynomial()
 
gp: K.pol
 

Invariants

Degree:  $16$
magma: Degree(K);
 
sage: K.degree()
 
gp: poldegree(K.pol)
 
Signature:  $[0, 8]$
magma: Signature(K);
 
sage: K.signature()
 
gp: K.sign
 
Discriminant:  \(61552138713495855712890625=5^{14}\cdot 11^{8}\cdot 19^{6}\)
magma: Discriminant(Integers(K));
 
sage: K.disc()
 
gp: K.disc
 
Root discriminant:  $40.91$
magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
 
sage: (K.disc().abs())^(1./K.degree())
 
gp: abs(K.disc)^(1/poldegree(K.pol))
 
Ramified primes:  $5, 11, 19$
magma: PrimeDivisors(Discriminant(Integers(K)));
 
sage: K.disc().support()
 
gp: factor(abs(K.disc))[,1]~
 
This field is not Galois over $\Q$.
This is not a CM field.

Integral basis (with respect to field generator \(a\))

$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $\frac{1}{71} a^{14} + \frac{12}{71} a^{13} - \frac{10}{71} a^{12} + \frac{13}{71} a^{10} - \frac{12}{71} a^{9} + \frac{17}{71} a^{8} - \frac{28}{71} a^{7} - \frac{6}{71} a^{6} + \frac{9}{71} a^{5} + \frac{31}{71} a^{4} + \frac{25}{71} a^{3} + \frac{15}{71} a^{2} - \frac{32}{71} a - \frac{28}{71}$, $\frac{1}{405610506373400375611952108932171} a^{15} + \frac{2316187205347671859792206867770}{405610506373400375611952108932171} a^{14} - \frac{116548982671997337395270780647584}{405610506373400375611952108932171} a^{13} + \frac{60347333800329569235597332381395}{405610506373400375611952108932171} a^{12} - \frac{200003091465842618834124408825380}{405610506373400375611952108932171} a^{11} - \frac{81596339502095429189915810548133}{405610506373400375611952108932171} a^{10} - \frac{147987888337013131303588308594144}{405610506373400375611952108932171} a^{9} + \frac{1505322539136506769407617003085}{13986569185289668124550072721799} a^{8} - \frac{158985372371091865192598796995113}{405610506373400375611952108932171} a^{7} - \frac{118796137181697838075771447263734}{405610506373400375611952108932171} a^{6} + \frac{200887943855697551893360468443857}{405610506373400375611952108932171} a^{5} + \frac{64607392514514658303200456669768}{405610506373400375611952108932171} a^{4} + \frac{29155595584933312641481832949594}{405610506373400375611952108932171} a^{3} - \frac{115630259573193104261640391231900}{405610506373400375611952108932171} a^{2} + \frac{141522755662782951124774065784994}{405610506373400375611952108932171} a - \frac{177839143698340417097038699734914}{405610506373400375611952108932171}$

magma: IntegralBasis(K);
 
sage: K.integral_basis()
 
gp: K.zk
 

Class group and class number

$C_{2}\times C_{2}\times C_{2}$, which has order $8$ (assuming GRH)

magma: ClassGroup(K);
 
sage: K.class_group().invariants()
 
gp: K.clgp
 

Unit group

magma: UK, f := UnitGroup(K);
 
sage: UK = K.unit_group()
 
Rank:  $7$
magma: UnitRank(K);
 
sage: UK.rank()
 
gp: K.fu
 
Torsion generator:  \( -1 \) (order $2$)
magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
 
sage: UK.torsion_generator()
 
gp: K.tu[2]
 
Fundamental units:  Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH)
magma: [K!f(g): g in Generators(UK)];
 
sage: UK.fundamental_units()
 
gp: K.fu
 
Regulator:  \( 126840.663141 \) (assuming GRH)
magma: Regulator(K);
 
sage: K.regulator()
 
gp: K.reg
 

Galois group

$C_2^3.C_4$ (as 16T41):

magma: GaloisGroup(K);
 
sage: K.galois_group(type='pari')
 
gp: polgalois(K.pol)
 
A solvable group of order 32
The 11 conjugacy class representatives for $C_2^3.C_4$
Character table for $C_2^3.C_4$

Intermediate fields

\(\Q(\sqrt{5}) \), 4.4.15125.1, 4.0.5225.1, 4.0.26125.1, 8.4.412921953125.1 x2, 8.0.82584390625.6

Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.

Sibling fields

Galois closure: data not computed
Degree 8 siblings: data not computed
Degree 16 siblings: data not computed

Frobenius cycle types

$p$ 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59
Cycle type ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ R ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$

In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.

magma: p := 7; // to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
magma: idealfactors := Factorization(p*Integers(K)); // get the data
 
magma: [<primefactor[2], Valuation(Norm(primefactor[1]), p)> : primefactor in idealfactors];
 
sage: p = 7; # to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
sage: [(e, pr.norm().valuation(p)) for pr,e in K.factor(p)]
 
gp: p = 7; \\ to obtain a list of $[e_i,f_i]$ for the factorization of the ideal $p\mathcal{O}_K$:
 
gp: idealfactors = idealprimedec(K, p); \\ get the data
 
gp: vector(length(idealfactors), j, [idealfactors[j][3], idealfactors[j][4]])
 

Local algebras for ramified primes

$p$LabelPolynomial $e$ $f$ $c$ Galois group Slope content
5Data not computed
$11$11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
11.4.2.1$x^{4} + 143 x^{2} + 5929$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
$19$19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.2.0.1$x^{2} - x + 2$$1$$2$$0$$C_2$$[\ ]^{2}$
19.2.1.2$x^{2} + 76$$2$$1$$1$$C_2$$[\ ]_{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$
19.4.2.1$x^{4} + 57 x^{2} + 1444$$2$$2$$2$$C_2^2$$[\ ]_{2}^{2}$