Normalized defining polynomial
\( x^{16} + 27 x^{14} + 360 x^{12} + 3306 x^{10} + 13094 x^{8} + 59400 x^{6} + 131445 x^{4} + 115167 x^{2} + 126736 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(615228915774362553504098556769=71^{2}\cdot 73^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $72.75$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $71, 73$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $\frac{1}{2} a^{4} - \frac{1}{2} a$, $\frac{1}{2} a^{5} - \frac{1}{2} a^{2}$, $\frac{1}{2} a^{6} - \frac{1}{2} a^{3}$, $\frac{1}{4} a^{7} - \frac{1}{4} a$, $\frac{1}{12} a^{8} + \frac{1}{4} a^{2} + \frac{1}{3}$, $\frac{1}{24} a^{9} - \frac{1}{24} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{3} + \frac{3}{8} a^{2} - \frac{5}{24} a - \frac{1}{6}$, $\frac{1}{24} a^{10} - \frac{1}{8} a^{7} + \frac{1}{8} a^{4} - \frac{1}{2} a^{3} - \frac{1}{3} a^{2} - \frac{3}{8} a - \frac{1}{2}$, $\frac{1}{24} a^{11} - \frac{1}{24} a^{8} + \frac{1}{8} a^{5} - \frac{1}{3} a^{3} - \frac{1}{8} a^{2} + \frac{1}{3}$, $\frac{1}{24} a^{12} - \frac{1}{24} a^{8} - \frac{1}{8} a^{7} + \frac{1}{8} a^{6} + \frac{1}{6} a^{4} + \frac{3}{8} a^{2} - \frac{3}{8} a - \frac{1}{6}$, $\frac{1}{48} a^{13} - \frac{1}{48} a^{12} - \frac{1}{48} a^{11} - \frac{1}{48} a^{10} - \frac{1}{48} a^{9} - \frac{1}{48} a^{8} - \frac{1}{16} a^{7} + \frac{3}{16} a^{6} + \frac{1}{48} a^{5} - \frac{7}{48} a^{4} + \frac{17}{48} a^{3} + \frac{17}{48} a^{2} - \frac{11}{24} a + \frac{1}{6}$, $\frac{1}{728714427880704} a^{14} - \frac{778659524429}{60726202323392} a^{12} + \frac{2923316286451}{182178606970176} a^{10} - \frac{3435560953175}{121452404646784} a^{8} - \frac{1}{8} a^{7} - \frac{10876922350589}{182178606970176} a^{6} - \frac{1031341348201}{60726202323392} a^{4} - \frac{50853181419959}{728714427880704} a^{2} + \frac{1}{8} a + \frac{1010359977029}{15181550580848}$, $\frac{1}{129711168162765312} a^{15} - \frac{1}{1457428855761408} a^{14} + \frac{255750381301129}{32427792040691328} a^{13} + \frac{778659524429}{121452404646784} a^{12} - \frac{429750875267717}{32427792040691328} a^{11} + \frac{1555819667991}{121452404646784} a^{10} - \frac{94524864438263}{21618528027127552} a^{9} - \frac{20056418302171}{728714427880704} a^{8} + \frac{2721802182202051}{32427792040691328} a^{7} - \frac{80212381134499}{364357213940352} a^{6} - \frac{542039069664707}{32427792040691328} a^{5} - \frac{21740984523071}{121452404646784} a^{4} - \frac{49056898456397303}{129711168162765312} a^{3} - \frac{124743411614595}{485809618587136} a^{2} - \frac{101465106443695}{2702316003390944} a - \frac{40984956383207}{91089303485088}$
Class group and class number
$C_{89}$, which has order $89$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 819937823.341 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^5.C_2.C_2$ (as 16T258):
| A solvable group of order 128 |
| The 26 conjugacy class representatives for $C_2^5.C_2.C_2$ |
| Character table for $C_2^5.C_2.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{73}) \), 4.4.389017.1, 8.2.784365294855887.1, 8.0.11047398519097.1, 8.6.10744730066519.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/2.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/13.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/17.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $71$ | 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.2.0.1 | $x^{2} - x + 11$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 71.4.2.1 | $x^{4} + 1491 x^{2} + 609961$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| $73$ | 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |
| 73.8.7.3 | $x^{8} - 45625$ | $8$ | $1$ | $7$ | $C_8$ | $[\ ]_{8}$ |