Normalized defining polynomial
\( x^{16} - 5 x^{15} + x^{14} + 67 x^{13} - 239 x^{12} + 250 x^{11} + 697 x^{10} - 3239 x^{9} + 6556 x^{8} - 8508 x^{7} + 7935 x^{6} - 5790 x^{5} + 3645 x^{4} - 1992 x^{3} + 876 x^{2} - 255 x + 93 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61485079079226837602304=2^{12}\cdot 3^{14}\cdot 11^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $26.56$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 11$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{1971584585093951189} a^{15} + \frac{714549830149251689}{1971584585093951189} a^{14} - \frac{826116043285259985}{1971584585093951189} a^{13} + \frac{966359405982338400}{1971584585093951189} a^{12} + \frac{610809488085344856}{1971584585093951189} a^{11} - \frac{889004666986234866}{1971584585093951189} a^{10} - \frac{421877739897165190}{1971584585093951189} a^{9} - \frac{22406537690389670}{1971584585093951189} a^{8} - \frac{204830739278845750}{1971584585093951189} a^{7} - \frac{393578744027362814}{1971584585093951189} a^{6} - \frac{763826095511276563}{1971584585093951189} a^{5} + \frac{880484933924358941}{1971584585093951189} a^{4} - \frac{805789350348257865}{1971584585093951189} a^{3} - \frac{148746876540327514}{1971584585093951189} a^{2} - \frac{474052898141968705}{1971584585093951189} a - \frac{442335436000117721}{1971584585093951189}$
Class group and class number
$C_{2}$, which has order $2$
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{6225307658}{327231837851} a^{15} + \frac{26502175828}{327231837851} a^{14} + \frac{12066991610}{327231837851} a^{13} - \frac{399571040421}{327231837851} a^{12} + \frac{1189102999648}{327231837851} a^{11} - \frac{787726430273}{327231837851} a^{10} - \frac{4527809731464}{327231837851} a^{9} + \frac{16501647453552}{327231837851} a^{8} - \frac{30022134424798}{327231837851} a^{7} + \frac{36068953546007}{327231837851} a^{6} - \frac{31627779378668}{327231837851} a^{5} + \frac{21629062642063}{327231837851} a^{4} - \frac{12226316783478}{327231837851} a^{3} + \frac{5606030312043}{327231837851} a^{2} - \frac{2090051031060}{327231837851} a + \frac{716030459416}{327231837851} \) (order $6$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 135461.540139 \) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$SD_{16}:C_2$ (as 16T32):
| A solvable group of order 32 |
| The 11 conjugacy class representatives for $SD_{16}:C_2$ |
| Character table for $SD_{16}:C_2$ |
Intermediate fields
| \(\Q(\sqrt{33}) \), \(\Q(\sqrt{-11}) \), \(\Q(\sqrt{-3}) \), 4.4.13068.1, 4.0.13068.1, \(\Q(\sqrt{-3}, \sqrt{-11})\), 8.0.170772624.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
| Degree 16 sibling: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.4.4.2 | $x^{4} - x^{2} + 5$ | $2$ | $2$ | $4$ | $C_4$ | $[2]^{2}$ |
| 2.4.0.1 | $x^{4} - x + 1$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ | |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ |
| 3.8.7.1 | $x^{8} + 3$ | $8$ | $1$ | $7$ | $QD_{16}$ | $[\ ]_{8}^{2}$ | |
| $11$ | 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |
| 11.8.6.1 | $x^{8} + 143 x^{4} + 5929$ | $4$ | $2$ | $6$ | $Q_8$ | $[\ ]_{4}^{2}$ |