Normalized defining polynomial
\( x^{16} - 7 x^{15} + 55 x^{14} + 419 x^{13} - 877 x^{12} + 13350 x^{11} + 109599 x^{10} + 897435 x^{9} + 5128604 x^{8} + 9987966 x^{7} + 61086386 x^{6} + 217020565 x^{5} + 407235395 x^{4} + 860961746 x^{3} + 4064864216 x^{2} + 670732880 x + 11844163600 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6123007382888435990757129497254763904689=13^{14}\cdot 41^{15}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $306.68$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $13, 41$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $\frac{1}{5} a^{7} - \frac{2}{5} a^{6} - \frac{2}{5} a^{5} - \frac{2}{5} a^{3} - \frac{2}{5} a^{2} - \frac{1}{5} a$, $\frac{1}{5} a^{8} - \frac{1}{5} a^{6} + \frac{1}{5} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} - \frac{2}{5} a$, $\frac{1}{50} a^{9} - \frac{3}{50} a^{8} + \frac{3}{50} a^{7} - \frac{12}{25} a^{6} - \frac{23}{50} a^{5} + \frac{2}{5} a^{2} + \frac{17}{50} a - \frac{2}{5}$, $\frac{1}{50} a^{10} + \frac{2}{25} a^{8} - \frac{1}{10} a^{7} - \frac{1}{2} a^{6} + \frac{21}{50} a^{5} - \frac{2}{5} a^{4} - \frac{1}{5} a^{3} + \frac{7}{50} a^{2} + \frac{1}{50} a - \frac{1}{5}$, $\frac{1}{50} a^{11} - \frac{3}{50} a^{8} + \frac{3}{50} a^{7} - \frac{3}{50} a^{6} - \frac{9}{25} a^{5} + \frac{1}{5} a^{4} - \frac{13}{50} a^{3} - \frac{9}{50} a^{2} + \frac{1}{25} a - \frac{2}{5}$, $\frac{1}{250} a^{12} + \frac{1}{250} a^{11} - \frac{1}{250} a^{10} - \frac{1}{250} a^{9} + \frac{21}{250} a^{7} - \frac{62}{125} a^{6} - \frac{17}{50} a^{5} - \frac{53}{250} a^{4} - \frac{46}{125} a^{3} + \frac{28}{125} a^{2} + \frac{17}{50} a + \frac{1}{5}$, $\frac{1}{1250} a^{13} - \frac{1}{1250} a^{12} + \frac{6}{625} a^{11} + \frac{11}{1250} a^{10} + \frac{6}{625} a^{9} - \frac{57}{625} a^{8} + \frac{9}{1250} a^{7} + \frac{214}{625} a^{6} - \frac{73}{1250} a^{5} + \frac{207}{625} a^{4} + \frac{99}{250} a^{3} + \frac{29}{625} a^{2} + \frac{39}{125} a + \frac{6}{25}$, $\frac{1}{912500} a^{14} - \frac{33}{912500} a^{13} + \frac{119}{912500} a^{12} + \frac{5277}{912500} a^{11} + \frac{937}{182500} a^{10} + \frac{4301}{456250} a^{9} - \frac{37943}{912500} a^{8} + \frac{14543}{182500} a^{7} - \frac{171497}{456250} a^{6} - \frac{5353}{18250} a^{5} + \frac{73443}{228125} a^{4} - \frac{426657}{912500} a^{3} - \frac{163991}{912500} a^{2} - \frac{13579}{45625} a + \frac{169}{9125}$, $\frac{1}{18920602342436335876673264860022595479198975647263875000} a^{15} + \frac{337974786550047328660189940828102504558037514169}{3784120468487267175334652972004519095839795129452775000} a^{14} + \frac{772979987706971919755462102206762197227722991686039}{3784120468487267175334652972004519095839795129452775000} a^{13} - \frac{33534520128803473404472395515581954928174723216992041}{18920602342436335876673264860022595479198975647263875000} a^{12} - \frac{22364567444449126079098157780020458456080171916141509}{18920602342436335876673264860022595479198975647263875000} a^{11} + \frac{796530882761446087278892916464755634515166774994817}{411317442226876866884201410000491206069542948853562500} a^{10} + \frac{163335165917243853886531408943345369944173686782009963}{18920602342436335876673264860022595479198975647263875000} a^{9} - \frac{856411599262474529215294701216349386817552999993277689}{18920602342436335876673264860022595479198975647263875000} a^{8} - \frac{355464812864469632696184073346510399595635387265855131}{4730150585609083969168316215005648869799743911815968750} a^{7} + \frac{189551960647319152360486151176333835128887030539462533}{411317442226876866884201410000491206069542948853562500} a^{6} - \frac{570067892365354352325868035038736528267385557019105039}{9460301171218167938336632430011297739599487823631937500} a^{5} + \frac{2366551493087592986073797427644325972874758882187660109}{18920602342436335876673264860022595479198975647263875000} a^{4} - \frac{3865293186226563354556764240150005177465006108634657837}{18920602342436335876673264860022595479198975647263875000} a^{3} - \frac{400433048887833340235835397555030379971766978705595889}{9460301171218167938336632430011297739599487823631937500} a^{2} - \frac{8922583487636862323259872551012912689797223180421277}{20565872111343843344210070500024560303477147442678125} a + \frac{32016085701930728752074952077610358641243440449488841}{94603011712181679383366324300112977395994878236319375}$
Class group and class number
$C_{45284}$, which has order $45284$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 1702357630.14 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 32 |
| The 20 conjugacy class representatives for $C_{16} : C_2$ |
| Character table for $C_{16} : C_2$ |
Intermediate fields
| \(\Q(\sqrt{41}) \), 4.4.11647649.1, 8.8.940041681957275729.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Galois closure: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/5.2.0.1}{2} }^{4}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{8}$ | $16$ | $16$ | R | $16$ | $16$ | ${\href{/LocalNumberField/23.2.0.1}{2} }^{8}$ | $16$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | $16$ | $16$ | ${\href{/LocalNumberField/59.8.0.1}{8} }^{2}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 13 | Data not computed | ||||||
| 41 | Data not computed | ||||||