Normalized defining polynomial
\( x^{16} + 884 x^{14} - 460 x^{13} + 279960 x^{12} - 283240 x^{11} + 37499896 x^{10} - 58510080 x^{9} + 2032000719 x^{8} - 3943978960 x^{7} + 53612475676 x^{6} - 98903155760 x^{5} + 744323000990 x^{4} - 1183776575800 x^{3} + 5126676453884 x^{2} - 5348496829980 x + 10362339067001 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6116821298063232221593993216000000000000=2^{40}\cdot 5^{12}\cdot 11^{8}\cdot 571^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $306.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 571$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{1713} a^{12} + \frac{661}{1713} a^{11} + \frac{218}{571} a^{10} - \frac{452}{1713} a^{9} - \frac{463}{1713} a^{8} + \frac{47}{571} a^{7} + \frac{170}{571} a^{6} - \frac{155}{571} a^{5} + \frac{181}{1713} a^{4} - \frac{251}{571} a^{3} + \frac{172}{1713} a^{2} - \frac{332}{1713} a - \frac{292}{1713}$, $\frac{1}{18843} a^{13} - \frac{1}{18843} a^{12} - \frac{8678}{18843} a^{11} + \frac{8554}{18843} a^{10} + \frac{1946}{6281} a^{9} + \frac{20}{18843} a^{8} - \frac{10}{571} a^{7} + \frac{33}{571} a^{6} + \frac{8236}{18843} a^{5} + \frac{6187}{18843} a^{4} - \frac{4964}{18843} a^{3} + \frac{4001}{18843} a^{2} - \frac{45}{571} a + \frac{4874}{18843}$, $\frac{1}{18843} a^{14} + \frac{8423}{18843} a^{11} - \frac{128}{18843} a^{10} + \frac{2294}{18843} a^{9} - \frac{5128}{18843} a^{8} - \frac{9}{571} a^{7} + \frac{7510}{18843} a^{6} - \frac{7753}{18843} a^{5} + \frac{8153}{18843} a^{4} + \frac{757}{6281} a^{3} + \frac{6707}{18843} a^{2} + \frac{4940}{18843} a - \frac{4432}{18843}$, $\frac{1}{369685939039747348728457849243273390035521479097887465780285093030089813566175143426637} a^{15} - \frac{8924155480034764624106927993501000420726741670020890722740828631260768479378634564}{369685939039747348728457849243273390035521479097887465780285093030089813566175143426637} a^{14} - \frac{2454621999112763750807099687978452648235709115697564571237417520444443703865601450}{123228646346582449576152616414424463345173826365962488593428364343363271188725047808879} a^{13} - \frac{56771822264819161833344304441018903735406449861228623242149985982844551303489505529}{369685939039747348728457849243273390035521479097887465780285093030089813566175143426637} a^{12} + \frac{51276895214230164003323994153819252415101551980202081232752156211272598415954444346013}{123228646346582449576152616414424463345173826365962488593428364343363271188725047808879} a^{11} + \frac{54309861251156524604992784240282699032964333592815178015785289186521745358173488963604}{123228646346582449576152616414424463345173826365962488593428364343363271188725047808879} a^{10} + \frac{68944540543673429356721648375370775210216861770289047884410616464409563726713288856549}{369685939039747348728457849243273390035521479097887465780285093030089813566175143426637} a^{9} - \frac{88080502912374312134389746248117711947239765908907880528645299652242790233347829608965}{369685939039747348728457849243273390035521479097887465780285093030089813566175143426637} a^{8} - \frac{3853881092178414698788587763976795868855235231758909625530878719763686835092359218624}{369685939039747348728457849243273390035521479097887465780285093030089813566175143426637} a^{7} + \frac{14354087885556912065514796965503143462858095396304512238049602755262569173346756162}{215811990099093606963489695997240741410111779975415916976231811459480334831392377949} a^{6} - \frac{6350331952853721985105340653925704850656579642336511011233331242510044131580175221329}{33607812639977031702587077203933944548683770827080678707298644820917255778743194856967} a^{5} + \frac{33147392053456183313859682309302874738547747117343029215175884445681966839125449539910}{369685939039747348728457849243273390035521479097887465780285093030089813566175143426637} a^{4} + \frac{30108262835727262607869269141818334241803646320038881716289018050755385953334901604471}{369685939039747348728457849243273390035521479097887465780285093030089813566175143426637} a^{3} - \frac{38340163343177063537639923625985932021723609364631052505459322652480712012988567690196}{369685939039747348728457849243273390035521479097887465780285093030089813566175143426637} a^{2} - \frac{155961484674458745076288456735029775677150717889790231025462924304017174131127888798224}{369685939039747348728457849243273390035521479097887465780285093030089813566175143426637} a + \frac{54038525610234339585911080679446679838262930211073687809338710060216247022236884568982}{369685939039747348728457849243273390035521479097887465780285093030089813566175143426637}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1455270}$, which has order $186274560$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 130320.792052 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T467):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.8000.1, 4.4.17600.1, 4.4.22000.1, 8.8.123904000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 571 | Data not computed | ||||||