Normalized defining polynomial
\( x^{16} + 924 x^{14} - 340 x^{13} + 272760 x^{12} - 31440 x^{11} + 33633576 x^{10} - 5455480 x^{9} + 2023819954 x^{8} - 364995040 x^{7} + 63031672656 x^{6} - 23051035280 x^{5} + 1004385747460 x^{4} - 766557135840 x^{3} + 6946284261904 x^{2} - 9033027884240 x + 11940059568116 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6116821298063232221593993216000000000000=2^{40}\cdot 5^{12}\cdot 11^{8}\cdot 571^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $306.66$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 5, 11, 571$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $\frac{1}{2} a^{8}$, $\frac{1}{2} a^{9}$, $\frac{1}{2} a^{10}$, $\frac{1}{2} a^{11}$, $\frac{1}{1142} a^{12} - \frac{267}{1142} a^{11} + \frac{27}{1142} a^{10} - \frac{110}{571} a^{9} - \frac{133}{1142} a^{8} - \frac{161}{571} a^{7} + \frac{37}{571} a^{6} - \frac{93}{571} a^{5} - \frac{63}{571} a^{4} + \frac{227}{571} a^{3} + \frac{181}{571} a^{2} + \frac{248}{571} a + \frac{275}{571}$, $\frac{1}{12562} a^{13} - \frac{3}{12562} a^{12} + \frac{1028}{6281} a^{11} + \frac{57}{1142} a^{10} + \frac{300}{6281} a^{9} - \frac{587}{6281} a^{8} + \frac{2071}{6281} a^{7} - \frac{603}{6281} a^{6} + \frac{1080}{6281} a^{5} + \frac{1867}{6281} a^{4} + \frac{2438}{6281} a^{3} + \frac{2923}{6281} a^{2} - \frac{489}{6281} a - \frac{2201}{6281}$, $\frac{1}{12562} a^{14} + \frac{1}{12562} a^{12} + \frac{349}{12562} a^{11} - \frac{2513}{12562} a^{10} - \frac{743}{6281} a^{9} + \frac{2655}{12562} a^{8} + \frac{193}{571} a^{7} - \frac{1059}{6281} a^{6} + \frac{674}{6281} a^{5} - \frac{1245}{6281} a^{4} - \frac{1973}{6281} a^{3} + \frac{2252}{6281} a^{2} - \frac{2315}{6281} a + \frac{2318}{6281}$, $\frac{1}{840169337895881014883645547475213033941136548567248164466837846222252183390372641471142} a^{15} + \frac{88333505186147543161111433628599769845815838563301031700024578153526250400323513}{38189515358903682494711161248873319724597115843965825657583538464647826517744210975961} a^{14} - \frac{2611147888712387522865279079006245989076027809613918867561847410858653151347200583}{420084668947940507441822773737606516970568274283624082233418923111126091695186320735571} a^{13} - \frac{1985845024433559039897763144146988519786433450125424345261406823445108302192278490}{420084668947940507441822773737606516970568274283624082233418923111126091695186320735571} a^{12} + \frac{7320451260842470556886719446421365181214083102720275176467963921631918010719795968403}{76379030717807364989422322497746639449194231687931651315167076929295653035488421951922} a^{11} + \frac{35117942807230672252417454216186679383634874256815280127525243224080506992399284187527}{840169337895881014883645547475213033941136548567248164466837846222252183390372641471142} a^{10} - \frac{162635455199626655097603580437353688853517346207686891150194751747328260751952787365385}{840169337895881014883645547475213033941136548567248164466837846222252183390372641471142} a^{9} - \frac{100777752481934204746007077459559907545885097058815878335217736729089337398952785379119}{840169337895881014883645547475213033941136548567248164466837846222252183390372641471142} a^{8} - \frac{63403342191469862852667657305445406912785260042527543950841576434369033527988887448681}{420084668947940507441822773737606516970568274283624082233418923111126091695186320735571} a^{7} + \frac{143866848667050402166756815383884603455021884994840215980833517417932406117969234063746}{420084668947940507441822773737606516970568274283624082233418923111126091695186320735571} a^{6} + \frac{139586740286393865622452335729115053566013803330309697302620384062522783547804390459934}{420084668947940507441822773737606516970568274283624082233418923111126091695186320735571} a^{5} - \frac{12467074806842562254172909114705373116533157881741132867286671729950030695308757651487}{38189515358903682494711161248873319724597115843965825657583538464647826517744210975961} a^{4} - \frac{203059362853330698177240688268170604317106423837414277515085350747467636956745653876384}{420084668947940507441822773737606516970568274283624082233418923111126091695186320735571} a^{3} - \frac{87353361193788463777185134371945814806613959320639808534426233703388231401946992644941}{420084668947940507441822773737606516970568274283624082233418923111126091695186320735571} a^{2} + \frac{4174253519010685947659552399547033424307691612623764034489852479575917683370648254101}{38189515358903682494711161248873319724597115843965825657583538464647826517744210975961} a - \frac{5338453349315334627214099308497646806724395906241368837385458647389548148123078298461}{420084668947940507441822773737606516970568274283624082233418923111126091695186320735571}$
Class group and class number
$C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{2}\times C_{1661828}$, which has order $212713984$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 130320.792052 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^3.C_2^4.C_2$ (as 16T467):
| A solvable group of order 256 |
| The 46 conjugacy class representatives for $C_2^3.C_2^4.C_2$ |
| Character table for $C_2^3.C_2^4.C_2$ is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.17600.1, 4.4.8000.1, 4.4.22000.1, 8.8.123904000000.2 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{6}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{4}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/41.1.0.1}{1} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/59.2.0.1}{2} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 2 | Data not computed | ||||||
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $11$ | $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ |
| $\Q_{11}$ | $x + 3$ | $1$ | $1$ | $0$ | Trivial | $[\ ]$ | |
| 11.2.1.1 | $x^{2} - 11$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.2.0.1 | $x^{2} - x + 7$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 11.2.1.2 | $x^{2} + 33$ | $2$ | $1$ | $1$ | $C_2$ | $[\ ]_{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 11.4.3.2 | $x^{4} - 11$ | $4$ | $1$ | $3$ | $D_{4}$ | $[\ ]_{4}^{2}$ | |
| 571 | Data not computed | ||||||