Normalized defining polynomial
\( x^{16} - x^{15} - 108 x^{14} + 237 x^{13} + 6821 x^{12} + 621 x^{11} - 224383 x^{10} - 846849 x^{9} + 563022 x^{8} + 14768610 x^{7} + 66008293 x^{6} + 249045053 x^{5} + 655817757 x^{4} + 844850241 x^{3} + 2040819419 x^{2} + 275105310 x + 1134395231 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(61068621502532689401365830322265625=5^{12}\cdot 29^{6}\cdot 41^{6}\cdot 97^{4}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $149.32$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $5, 29, 41, 97$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{5} a^{12} - \frac{2}{5} a^{11} - \frac{2}{5} a^{10} - \frac{1}{5} a^{8} + \frac{1}{5} a^{7} - \frac{1}{5} a^{6} + \frac{2}{5} a^{5} + \frac{1}{5} a^{4} + \frac{2}{5} a^{3} - \frac{1}{5} a^{2} - \frac{1}{5} a + \frac{1}{5}$, $\frac{1}{15} a^{13} - \frac{1}{15} a^{12} + \frac{2}{5} a^{11} - \frac{7}{15} a^{10} - \frac{2}{5} a^{9} + \frac{2}{5} a^{6} + \frac{1}{5} a^{5} + \frac{1}{5} a^{4} + \frac{1}{15} a^{3} - \frac{7}{15} a^{2} - \frac{4}{15}$, $\frac{1}{45} a^{14} + \frac{2}{45} a^{12} + \frac{1}{9} a^{11} + \frac{8}{45} a^{10} + \frac{1}{5} a^{9} + \frac{1}{15} a^{8} + \frac{2}{5} a^{7} - \frac{1}{15} a^{6} - \frac{1}{3} a^{5} - \frac{14}{45} a^{4} - \frac{4}{15} a^{3} + \frac{11}{45} a^{2} + \frac{14}{45} a - \frac{7}{45}$, $\frac{1}{29143069212086660458132806817394974219981322206182524396557589143335} a^{15} + \frac{982199390643082875894183301683530516889331415237368160179494116}{5828613842417332091626561363478994843996264441236504879311517828667} a^{14} + \frac{331591365167204066044070483177841597594851699545907123229381092249}{29143069212086660458132806817394974219981322206182524396557589143335} a^{13} + \frac{1158318443297097816570690790156375424872081047665764930800028033918}{29143069212086660458132806817394974219981322206182524396557589143335} a^{12} - \frac{235914126663977348982229134131784012149979459039083333575806983146}{5828613842417332091626561363478994843996264441236504879311517828667} a^{11} - \frac{2114509014761258842493248769901839774349510319721062219386257362523}{5828613842417332091626561363478994843996264441236504879311517828667} a^{10} + \frac{4732367720794980534339583556489697509116822140711731508198466807}{9714356404028886819377602272464991406660440735394174798852529714445} a^{9} + \frac{2226211995711017586503952412908121487888189298260679805935653312131}{9714356404028886819377602272464991406660440735394174798852529714445} a^{8} + \frac{3574580097185379119278094224582315051857076642179475370804762701184}{9714356404028886819377602272464991406660440735394174798852529714445} a^{7} - \frac{369441985457212514196153723050775882071027974234710479559553423439}{1079372933780987424375289141384999045184493415043797199872503301605} a^{6} + \frac{3386698572953957697685057554372153092675629847870937178288123426312}{29143069212086660458132806817394974219981322206182524396557589143335} a^{5} + \frac{6317688082589996821773598491626129006784921645891849805877859542119}{29143069212086660458132806817394974219981322206182524396557589143335} a^{4} + \frac{13520448637630253643672274760223870133427985349458890406802240440878}{29143069212086660458132806817394974219981322206182524396557589143335} a^{3} + \frac{50003667830154777438716148634180229710664068258795786160236533724}{200986684221287313504364184947551546344698773835741547562466132023} a^{2} + \frac{11073491902056834953776541581276080431253164879969533925741445601243}{29143069212086660458132806817394974219981322206182524396557589143335} a + \frac{7979177494113519521430145554616175485079888368004266500959434242737}{29143069212086660458132806817394974219981322206182524396557589143335}$
Class group and class number
$C_{2}\times C_{2}\times C_{4}$, which has order $16$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 2977910941.3 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 512 |
| The 62 conjugacy class representatives for t16n790 are not computed |
| Character table for t16n790 is not computed |
Intermediate fields
| \(\Q(\sqrt{5}) \), 4.4.5125.1, 4.0.29725.1, 4.0.3625.1, 8.0.22089390625.8 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | ${\href{/LocalNumberField/2.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/3.2.0.1}{2} }^{4}$ | R | ${\href{/LocalNumberField/7.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/11.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/19.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/19.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | R | ${\href{/LocalNumberField/31.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/43.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/47.2.0.1}{2} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $29$ | 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.2.0.1 | $x^{2} - x + 3$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 29.4.3.1 | $x^{4} - 29$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 29.4.3.2 | $x^{4} - 116$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $41$ | 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.2.0.1 | $x^{2} - x + 12$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 41.8.6.2 | $x^{8} + 943 x^{4} + 242064$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $97$ | 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ |
| 97.2.0.1 | $x^{2} - x + 5$ | $1$ | $2$ | $0$ | $C_2$ | $[\ ]^{2}$ | |
| 97.4.2.2 | $x^{4} - 97 x^{2} + 47045$ | $2$ | $2$ | $2$ | $C_4$ | $[\ ]_{2}^{2}$ | |
| 97.4.2.1 | $x^{4} + 873 x^{2} + 235225$ | $2$ | $2$ | $2$ | $C_2^2$ | $[\ ]_{2}^{2}$ | |
| 97.4.0.1 | $x^{4} - x + 23$ | $1$ | $4$ | $0$ | $C_4$ | $[\ ]^{4}$ |