Normalized defining polynomial
\( x^{16} - 3 x^{15} - 18 x^{14} + 124 x^{13} - 167 x^{12} - 2066 x^{11} + 14604 x^{10} - 47496 x^{9} + 98643 x^{8} - 123761 x^{7} + 93551 x^{6} - 31491 x^{5} + 52452 x^{4} - 130628 x^{3} + 90463 x^{2} - 18586 x + 4409 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(6065133898851787352862994830253=37^{3}\cdot 149^{12}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $83.93$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $37, 149$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is not Galois over $\Q$. | |||
| This is not a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $\frac{1}{31} a^{12} + \frac{1}{31} a^{11} - \frac{14}{31} a^{10} - \frac{10}{31} a^{9} + \frac{10}{31} a^{8} + \frac{12}{31} a^{7} - \frac{13}{31} a^{6} - \frac{4}{31} a^{5} + \frac{15}{31} a^{4} - \frac{14}{31} a^{3} + \frac{10}{31} a^{2} - \frac{11}{31} a - \frac{14}{31}$, $\frac{1}{31} a^{13} - \frac{15}{31} a^{11} + \frac{4}{31} a^{10} - \frac{11}{31} a^{9} + \frac{2}{31} a^{8} + \frac{6}{31} a^{7} + \frac{9}{31} a^{6} - \frac{12}{31} a^{5} + \frac{2}{31} a^{4} - \frac{7}{31} a^{3} + \frac{10}{31} a^{2} - \frac{3}{31} a + \frac{14}{31}$, $\frac{1}{252743} a^{14} - \frac{1611}{252743} a^{13} - \frac{3831}{252743} a^{12} + \frac{32908}{252743} a^{11} - \frac{69250}{252743} a^{10} + \frac{122223}{252743} a^{9} - \frac{5788}{252743} a^{8} + \frac{59313}{252743} a^{7} + \frac{74653}{252743} a^{6} + \frac{91700}{252743} a^{5} - \frac{114967}{252743} a^{4} + \frac{27666}{252743} a^{3} - \frac{109391}{252743} a^{2} + \frac{41553}{252743} a - \frac{57697}{252743}$, $\frac{1}{44880100659786031605607495812689} a^{15} - \frac{599476231538097840686749}{669852248653522859785186504667} a^{14} - \frac{719636692214420303061156201982}{44880100659786031605607495812689} a^{13} - \frac{363789790688588589583772577531}{44880100659786031605607495812689} a^{12} + \frac{19484408619099428684927817414026}{44880100659786031605607495812689} a^{11} + \frac{1309947420408633540709103912754}{44880100659786031605607495812689} a^{10} + \frac{18012168324254026243385654484671}{44880100659786031605607495812689} a^{9} + \frac{12456390787871719015199337810839}{44880100659786031605607495812689} a^{8} - \frac{15006353789935114709732215757485}{44880100659786031605607495812689} a^{7} - \frac{20456785647061333523886098611732}{44880100659786031605607495812689} a^{6} + \frac{21846247017865368244439358414674}{44880100659786031605607495812689} a^{5} - \frac{416392462222040824962411021322}{2640005921163884212094558577217} a^{4} - \frac{12421692102219116018877830865843}{44880100659786031605607495812689} a^{3} - \frac{21908885427224786801530369708011}{44880100659786031605607495812689} a^{2} - \frac{22019694249821298367225242504278}{44880100659786031605607495812689} a - \frac{1104749155544801855454586667210}{44880100659786031605607495812689}$
Class group and class number
$C_{3}\times C_{3}$, which has order $9$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 138559515.792 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
| A solvable group of order 1024 |
| The 34 conjugacy class representatives for t16n1251 |
| Character table for t16n1251 is not computed |
Intermediate fields
| \(\Q(\sqrt{149}) \), 4.0.3307949.1, 8.0.404873483704237.1 |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Sibling fields
| Degree 16 siblings: | data not computed |
| Degree 32 siblings: | data not computed |
| Arithmetically equvalently siblings: | data not computed |
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | $16$ | ${\href{/LocalNumberField/3.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/5.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/5.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/5.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/11.8.0.1}{8} }^{2}$ | $16$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/17.2.0.1}{2} }^{3}{,}\,{\href{/LocalNumberField/17.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/19.1.0.1}{1} }^{6}$ | $16$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{7}{,}\,{\href{/LocalNumberField/29.1.0.1}{1} }^{2}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{5}{,}\,{\href{/LocalNumberField/31.1.0.1}{1} }^{6}$ | R | ${\href{/LocalNumberField/41.4.0.1}{4} }^{4}$ | $16$ | ${\href{/LocalNumberField/47.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{2}{,}\,{\href{/LocalNumberField/53.2.0.1}{2} }^{4}$ | $16$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| 37 | Data not computed | ||||||
| 149 | Data not computed | ||||||