Normalized defining polynomial
\( x^{16} - 2 x^{15} + 163 x^{14} - 282 x^{13} + 12233 x^{12} - 18086 x^{11} + 549386 x^{10} - 679232 x^{9} + 16099839 x^{8} - 16070158 x^{7} + 314665218 x^{6} - 238996272 x^{5} + 4001369686 x^{4} - 2066649212 x^{3} + 30257685388 x^{2} - 8015671568 x + 104203730401 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(605544796424780341033364025769984=2^{24}\cdot 11^{8}\cdot 17^{14}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $111.91$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 11, 17$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(1496=2^{3}\cdot 11\cdot 17\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{1496}(1,·)$, $\chi_{1496}(1409,·)$, $\chi_{1496}(461,·)$, $\chi_{1496}(1165,·)$, $\chi_{1496}(1233,·)$, $\chi_{1496}(21,·)$, $\chi_{1496}(89,·)$, $\chi_{1496}(285,·)$, $\chi_{1496}(353,·)$, $\chi_{1496}(529,·)$, $\chi_{1496}(637,·)$, $\chi_{1496}(373,·)$, $\chi_{1496}(441,·)$, $\chi_{1496}(705,·)$, $\chi_{1496}(1341,·)$, $\chi_{1496}(1429,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $a^{10}$, $a^{11}$, $a^{12}$, $a^{13}$, $a^{14}$, $\frac{1}{10155719139219844039848732285070377198178227955933204769} a^{15} - \frac{4234238032704219855270882707038796527479375597961203099}{10155719139219844039848732285070377198178227955933204769} a^{14} - \frac{3909652011699257101298196022865666518052411230418259338}{10155719139219844039848732285070377198178227955933204769} a^{13} - \frac{3834585560588777401619314134226301893530675474016296288}{10155719139219844039848732285070377198178227955933204769} a^{12} + \frac{4002294370329170333551575730514104475415835973901105341}{10155719139219844039848732285070377198178227955933204769} a^{11} + \frac{1713112009227070804142222558163097107520234554286749605}{10155719139219844039848732285070377198178227955933204769} a^{10} - \frac{3935740832054336091406356485952606614750538076470616530}{10155719139219844039848732285070377198178227955933204769} a^{9} + \frac{4215049308926653563060646340606102918692679063723664783}{10155719139219844039848732285070377198178227955933204769} a^{8} - \frac{1976561231545632675875629681678425751820068378906548569}{10155719139219844039848732285070377198178227955933204769} a^{7} - \frac{875449942396107393179197727296628465239058816948189757}{10155719139219844039848732285070377198178227955933204769} a^{6} + \frac{2213941865697759580967233186684213886061535074271892035}{10155719139219844039848732285070377198178227955933204769} a^{5} + \frac{3634507347192137355491160669858587740781013280591858525}{10155719139219844039848732285070377198178227955933204769} a^{4} + \frac{3696718339261413975170396063420412498418765338838104097}{10155719139219844039848732285070377198178227955933204769} a^{3} - \frac{4032346632321995058345828145062245480020827025738037535}{10155719139219844039848732285070377198178227955933204769} a^{2} - \frac{3042180521031791725740998432237708937419926534103774872}{10155719139219844039848732285070377198178227955933204769} a - \frac{3592111591578118584388441503483329236798003463839726842}{10155719139219844039848732285070377198178227955933204769}$
Class group and class number
$C_{5}\times C_{120}\times C_{1680}$, which has order $1008000$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -1 \) (order $2$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 3640.012213375973 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2\times C_8$ (as 16T5):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_8\times C_2$ |
| Character table for $C_8\times C_2$ |
Intermediate fields
| \(\Q(\sqrt{-374}) \), \(\Q(\sqrt{17}) \), \(\Q(\sqrt{-22}) \), \(\Q(\sqrt{17}, \sqrt{-22})\), 4.4.4913.1, 4.0.38046272.6, 8.0.1447518813097984.43, 8.0.24607819822665728.4, \(\Q(\zeta_{17})^+\) |
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | ${\href{/LocalNumberField/3.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/5.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/7.8.0.1}{8} }^{2}$ | R | ${\href{/LocalNumberField/13.2.0.1}{2} }^{8}$ | R | ${\href{/LocalNumberField/19.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/23.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/29.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/31.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/37.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/41.8.0.1}{8} }^{2}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.4.0.1}{4} }^{4}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ |
| 2.8.12.1 | $x^{8} + 6 x^{6} + 8 x^{5} + 16$ | $2$ | $4$ | $12$ | $C_4\times C_2$ | $[3]^{4}$ | |
| 11 | Data not computed | ||||||
| 17 | Data not computed | ||||||