Normalized defining polynomial
\( x^{16} - 2 x^{15} - 25 x^{14} + 50 x^{13} + 254 x^{12} - 442 x^{11} - 1452 x^{10} + 2200 x^{9} + 4686 x^{8} - 7282 x^{7} - 5457 x^{6} + 3214 x^{5} + 30374 x^{4} + 11566 x^{3} + 3134 x^{2} - 9304 x + 2101 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(605165749776000000000000=2^{16}\cdot 3^{8}\cdot 5^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(420=2^{2}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{420}(1,·)$, $\chi_{420}(323,·)$, $\chi_{420}(71,·)$, $\chi_{420}(13,·)$, $\chi_{420}(337,·)$, $\chi_{420}(83,·)$, $\chi_{420}(407,·)$, $\chi_{420}(349,·)$, $\chi_{420}(97,·)$, $\chi_{420}(419,·)$, $\chi_{420}(167,·)$, $\chi_{420}(169,·)$, $\chi_{420}(239,·)$, $\chi_{420}(181,·)$, $\chi_{420}(251,·)$, $\chi_{420}(253,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{4} a^{10} - \frac{1}{2} a^{9} - \frac{1}{4} a^{6} - \frac{1}{2} a^{4} - \frac{1}{2} a^{3} - \frac{1}{4} a^{2} + \frac{1}{4}$, $\frac{1}{44} a^{11} + \frac{1}{4} a^{7} - \frac{1}{2} a^{6} - \frac{1}{2} a^{5} - \frac{1}{2} a^{4} + \frac{1}{4} a^{3} - \frac{1}{2} a^{2} + \frac{21}{44} a - \frac{1}{2}$, $\frac{1}{176} a^{12} - \frac{1}{88} a^{11} - \frac{1}{16} a^{10} + \frac{1}{8} a^{9} - \frac{7}{16} a^{8} + \frac{1}{4} a^{7} - \frac{5}{16} a^{6} - \frac{1}{8} a^{5} - \frac{5}{16} a^{4} - \frac{3}{8} a^{3} - \frac{3}{44} a^{2} + \frac{3}{22} a - \frac{1}{16}$, $\frac{1}{176} a^{13} + \frac{1}{176} a^{11} - \frac{3}{16} a^{9} + \frac{3}{8} a^{8} + \frac{3}{16} a^{7} + \frac{1}{4} a^{6} + \frac{7}{16} a^{5} + \frac{2}{11} a^{3} + \frac{21}{176} a - \frac{1}{8}$, $\frac{1}{296384} a^{14} - \frac{127}{148192} a^{13} - \frac{33}{13472} a^{12} + \frac{43}{9262} a^{11} - \frac{331}{6736} a^{10} - \frac{5719}{13472} a^{9} - \frac{77}{1684} a^{8} - \frac{1297}{13472} a^{7} + \frac{4193}{13472} a^{6} + \frac{483}{6736} a^{5} + \frac{75393}{296384} a^{4} + \frac{36471}{148192} a^{3} - \frac{2373}{26944} a^{2} + \frac{18675}{74096} a + \frac{4195}{26944}$, $\frac{1}{788492567314437646144} a^{15} - \frac{591698762848327}{394246283657218823072} a^{14} + \frac{95375504142368965}{35840571241565347552} a^{13} - \frac{11267591109476928}{12320196364288088221} a^{12} + \frac{196568976504518093}{49280785457152352884} a^{11} + \frac{3500636315169257337}{35840571241565347552} a^{10} + \frac{1940214473176756729}{17920285620782673776} a^{9} - \frac{16635714564439565061}{35840571241565347552} a^{8} + \frac{17881195065347656079}{35840571241565347552} a^{7} - \frac{6746359470061995569}{17920285620782673776} a^{6} - \frac{234607360371365994123}{788492567314437646144} a^{5} - \frac{29778959943201336481}{394246283657218823072} a^{4} - \frac{22705621665860136917}{71681142483130695104} a^{3} + \frac{73423562696307104575}{197123141828609411536} a^{2} - \frac{121751094923296112443}{788492567314437646144} a + \frac{3120829212465688705}{8960142810391336888}$
Class group and class number
$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( -\frac{135658817260507}{620371807485788864} a^{15} + \frac{30976112772923}{310185903742894432} a^{14} + \frac{1887848240981345}{310185903742894432} a^{13} - \frac{88577734674347}{38773237967861804} a^{12} - \frac{11109339251179907}{155092951871447216} a^{11} + \frac{175624209166849}{28198718522081312} a^{10} + \frac{1646174414149053}{3524839815260164} a^{9} + \frac{1274354616739823}{28198718522081312} a^{8} - \frac{51323884261696179}{28198718522081312} a^{7} - \frac{1916306320323637}{14099359261040656} a^{6} + \frac{2530368078893884605}{620371807485788864} a^{5} + \frac{411212021244243957}{310185903742894432} a^{4} - \frac{5883956780913876059}{620371807485788864} a^{3} - \frac{847998471012210605}{77546475935723608} a^{2} - \frac{2947220539064520275}{620371807485788864} a + \frac{35617412783857187}{14099359261040656} \) (order $10$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 76884.6053994 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.1.0.1}{1} }^{16}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ |
| 5.8.6.1 | $x^{8} - 5 x^{4} + 400$ | $4$ | $2$ | $6$ | $C_4\times C_2$ | $[\ ]_{4}^{2}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |