Normalized defining polynomial
\( x^{16} + 29 x^{14} + 336 x^{12} + 1979 x^{10} + 6231 x^{8} + 10055 x^{6} + 7040 x^{4} + 1125 x^{2} + 25 \)
Invariants
| Degree: | $16$ | magma: Degree(K);
sage: K.degree()
gp: poldegree(K.pol)
| |
| Signature: | $[0, 8]$ | magma: Signature(K);
sage: K.signature()
gp: K.sign
| |
| Discriminant: | \(605165749776000000000000=2^{16}\cdot 3^{8}\cdot 5^{12}\cdot 7^{8}\) | magma: Discriminant(Integers(K));
sage: K.disc()
gp: K.disc
| |
| Root discriminant: | $30.65$ | magma: Abs(Discriminant(Integers(K)))^(1/Degree(K));
sage: (K.disc().abs())^(1./K.degree())
gp: abs(K.disc)^(1/poldegree(K.pol))
| |
| Ramified primes: | $2, 3, 5, 7$ | magma: PrimeDivisors(Discriminant(Integers(K)));
sage: K.disc().support()
gp: factor(abs(K.disc))[,1]~
| |
| This field is Galois and abelian over $\Q$. | |||
| Conductor: | \(420=2^{2}\cdot 3\cdot 5\cdot 7\) | ||
| Dirichlet character group: | $\lbrace$$\chi_{420}(1,·)$, $\chi_{420}(323,·)$, $\chi_{420}(197,·)$, $\chi_{420}(13,·)$, $\chi_{420}(209,·)$, $\chi_{420}(211,·)$, $\chi_{420}(251,·)$, $\chi_{420}(407,·)$, $\chi_{420}(223,·)$, $\chi_{420}(97,·)$, $\chi_{420}(419,·)$, $\chi_{420}(169,·)$, $\chi_{420}(113,·)$, $\chi_{420}(307,·)$, $\chi_{420}(41,·)$, $\chi_{420}(379,·)$$\rbrace$ | ||
| This is a CM field. | |||
Integral basis (with respect to field generator \(a\))
$1$, $a$, $a^{2}$, $a^{3}$, $a^{4}$, $a^{5}$, $a^{6}$, $a^{7}$, $a^{8}$, $a^{9}$, $\frac{1}{11} a^{10} - \frac{2}{11} a^{8} - \frac{3}{11} a^{6} + \frac{4}{11} a^{4} + \frac{4}{11} a^{2} - \frac{3}{11}$, $\frac{1}{11} a^{11} - \frac{2}{11} a^{9} - \frac{3}{11} a^{7} + \frac{4}{11} a^{5} + \frac{4}{11} a^{3} - \frac{3}{11} a$, $\frac{1}{55} a^{12} - \frac{1}{55} a^{10} + \frac{6}{55} a^{8} - \frac{21}{55} a^{6} - \frac{14}{55} a^{4} - \frac{2}{11} a^{2} - \frac{5}{11}$, $\frac{1}{275} a^{13} - \frac{6}{275} a^{11} + \frac{126}{275} a^{9} - \frac{61}{275} a^{7} + \frac{21}{275} a^{5} - \frac{17}{55} a^{3} + \frac{9}{55} a$, $\frac{1}{24475} a^{14} + \frac{134}{24475} a^{12} + \frac{611}{24475} a^{10} - \frac{2396}{24475} a^{8} + \frac{7856}{24475} a^{6} + \frac{201}{4895} a^{4} + \frac{174}{4895} a^{2} - \frac{39}{979}$, $\frac{1}{24475} a^{15} - \frac{4}{2225} a^{13} - \frac{546}{24475} a^{11} + \frac{4101}{24475} a^{9} + \frac{914}{24475} a^{7} - \frac{11633}{24475} a^{5} + \frac{284}{979} a^{3} - \frac{42}{445} a$
Class group and class number
$C_{4}\times C_{8}$, which has order $32$ (assuming GRH)
Unit group
| Rank: | $7$ | magma: UnitRank(K);
sage: UK.rank()
gp: K.fu
| |
| Torsion generator: | \( \frac{1}{275} a^{15} + \frac{6}{55} a^{13} + \frac{72}{55} a^{11} + 8 a^{9} + \frac{288}{11} a^{7} + \frac{12096}{275} a^{5} + \frac{1792}{55} a^{3} + \frac{384}{55} a \) (order $4$) | magma: K!f(TU.1) where TU,f is TorsionUnitGroup(K);
sage: UK.torsion_generator()
gp: K.tu[2]
| |
| Fundamental units: | Units are too long to display, but can be downloaded with other data for this field from 'Stored data to gp' link to the right (assuming GRH) | magma: [K!f(g): g in Generators(UK)];
sage: UK.fundamental_units()
gp: K.fu
| |
| Regulator: | \( 14409.2792961 \) (assuming GRH) | magma: Regulator(K);
sage: K.regulator()
gp: K.reg
|
Galois group
$C_2^2\times C_4$ (as 16T2):
| An abelian group of order 16 |
| The 16 conjugacy class representatives for $C_4\times C_2^2$ |
| Character table for $C_4\times C_2^2$ |
Intermediate fields
Fields in the database are given up to isomorphism. Isomorphic intermediate fields are shown with their multiplicities.
Frobenius cycle types
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 53 | 59 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Cycle type | R | R | R | R | ${\href{/LocalNumberField/11.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/13.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/17.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/19.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/23.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/29.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/31.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/37.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/41.2.0.1}{2} }^{8}$ | ${\href{/LocalNumberField/43.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/47.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/53.4.0.1}{4} }^{4}$ | ${\href{/LocalNumberField/59.2.0.1}{2} }^{8}$ |
In the table, R denotes a ramified prime. Cycle lengths which are repeated in a cycle type are indicated by exponents.
Local algebras for ramified primes
| $p$ | Label | Polynomial | $e$ | $f$ | $c$ | Galois group | Slope content |
|---|---|---|---|---|---|---|---|
| $2$ | 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ |
| 2.8.8.1 | $x^{8} + 28 x^{4} + 144$ | $2$ | $4$ | $8$ | $C_4\times C_2$ | $[2]^{4}$ | |
| $3$ | 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 3.8.4.1 | $x^{8} + 36 x^{4} - 27 x^{2} + 324$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ | |
| $5$ | 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| 5.4.3.1 | $x^{4} - 5$ | $4$ | $1$ | $3$ | $C_4$ | $[\ ]_{4}$ | |
| $7$ | 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |
| 7.8.4.1 | $x^{8} + 14 x^{6} + 539 x^{4} + 343 x^{2} + 60025$ | $2$ | $4$ | $4$ | $C_4\times C_2$ | $[\ ]_{2}^{4}$ |